已知:拋物線y=-x2+2x+m-2交y軸于點A(0,2m-7).與直線
y=x交于點B、C(B在右、C在左).
1.求拋物線的解析式
2.設(shè)拋物線的頂點為E,在拋物線的對稱軸上是否存在一點F,使得,若存在,求出點F的坐標(biāo),若不存在,說明理由
3.射線OC上有兩個動點P、Q同時從原點出發(fā),分別以每秒個單位長度、每秒2個單位長度的速度沿射線OC運(yùn)動,以PQ為斜邊在直線BC的上方作直角三角形PMQ(直角邊分別平行于坐標(biāo)軸),設(shè)運(yùn)動時間為t秒,若△PMQ與拋物線y=-x2+2x+m-2有公共點,求t的取值范圍.
1.點A(0,2m-7)代入y=-x2+2x+m-2,得m=5
∴拋物線的解析式為y=-x2+2x+3
2.由得,
∴B(),C()
B()關(guān)于拋物線對稱軸的
對稱點為
可得直線的解析式為,
由,可得
∴ ………………………5分
3.當(dāng)在拋物線上時,可得,,
當(dāng)在拋物線上時,可得,,
舍去負(fù)值,所以t的取值范圍是.………………8分
【解析】(1)將A點坐標(biāo)代入解得拋物線的解析式;
(2)先求出拋物線與直線的交點B、C的坐標(biāo),然后求出B點關(guān)于拋物線對稱軸的對稱點B′,從而得出B′C的解析式,再求出F點坐標(biāo);
(3)把M、P兩點的坐標(biāo)代入拋物線方程中得出t的取值范圍。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:江西省高安市2012屆九年級第一次模擬考試數(shù)學(xué)試題 題型:044
已知:拋物線y=a(x-2)2+b(ab<0)的頂點為A,與x軸的交點為B,C(點B在點C的左側(cè)).
(1)直接寫出拋物線對稱軸方程;
(2)若拋物線經(jīng)過原點,且△ABC為直角三角形,求a,b的值;
(3)若D為拋物線對稱軸上一點,則以A,B,C,D為頂點的四邊形能否為正方形?若能,請求出a,b滿足的關(guān)系式;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:拋物線y=-x2+2x+m-2交y軸于點A(0,2m-7).與直線
y=x交于點B、C(B在右、C在左).
1.求拋物線的解析式
2.設(shè)拋物線的頂點為E,在拋物線的對稱軸上是否存在一點F,使得,若存在,求出點F的坐標(biāo),若不存在,說明理由
3.射線OC上有兩個動點P、Q同時從原點出發(fā),分別以每秒個單位長度、每秒2個單位長度的速度沿射線OC運(yùn)動,以PQ為斜邊在直線BC的上方作直角三角形PMQ(直角邊分別平行于坐標(biāo)軸),設(shè)運(yùn)動時間為t秒,若△PMQ與拋物線y=-x2+2x+m-2有公共點,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆北京石景山中考二模數(shù)學(xué)試卷(帶解析) 題型:解答題
已知:拋物線y=-x2+2x+m-2交y軸于點A(0,2m-7).與直線
y=x交于點B、C(B在右、C在左).
【小題1】求拋物線的解析式
【小題2】設(shè)拋物線的頂點為E,在拋物線的對稱軸上是否存在一點F,使得,若存在,求出點F的坐標(biāo),若不存在,說明理由
【小題3】射線OC上有兩個動點P、Q同時從原點出發(fā),分別以每秒個單位長度、每秒2個單位長度的速度沿射線OC運(yùn)動,以PQ為斜邊在直線BC的上方作直角三角形PMQ(直角邊分別平行于坐標(biāo)軸),設(shè)運(yùn)動時間為t秒,若△PMQ與拋物線y=-x2+2x+m-2有公共點,求t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com