【題目】如圖,在直角坐標系中,已知點M0的坐標為(1,0),將線段O M0繞原點O沿逆時針方向旋轉45°,再將其延長到M1,使得M1 M0⊥O M0,得到線段OM1;又將線段OM1繞原點O沿逆時針方向旋轉45°,再將其延長到M2,使得M2M1⊥OM1,得到線段OM2,如此下去,得到線段OM3,OM4,…,OMn
(1)寫出點M5的坐標;
(2)求△M5OM6的周長;
(3)我們規(guī)定:把點Mn(xn,yn)(n=0,1,2,3…)的橫坐標xn,縱坐標yn都取絕對值后得到的新坐標(|xn|,|yn|)稱之為點Mn的“絕對坐標”.根據(jù)圖中點Mn的分布規(guī)律,請你猜想點Mn的“絕對坐標”,并寫出來.
【答案】(1);(2);(3)當點M在x軸上時,點的“絕對坐標”為;當點M在y軸上時,點的“絕對坐標”為;當點M在各象限的角平分線上時,點的“絕對坐標”為
【解析】
(1)根據(jù)等腰直角三角形的性質分別求出M1、M2、M3、M4的坐標,然后求M5的坐標.
(2)要求周長,就先根據(jù)各點的坐標求出三角形的三邊長,然后再求周長.
(3)點Mn的“絕對坐標”可分三類情況來一一當點M在x軸上時;當點M在各象限的分角線上時;當點M在y軸上時.
(1)由題得:OM0=M0M1,
∴M1的坐標為(1,1).
同理M2的坐標為(0,2),
M3的坐標為(-2,2),
M4的坐標為(-4,0),
M5(-4,-4);
(2)由規(guī)律可知,OM5=,
M5M6=,OM6=8,
∴△ M5OM6的周長為8+;
(3)由題意知,OM0旋轉8次之后回到x軸的正半軸,
在這8次旋轉中,點分別落在坐標象限的分角線上或x軸或y軸上,
但各點“絕對坐標”的橫、縱坐標均為非負數(shù),
因此,各點的“絕對坐標”可分三種情況:
①當n=4k時(其中k=0,1,2,3,),點在x軸上,則Mn;
②當n=4k-2時(其中k=1,2,3,),點在y軸上,點Mn;
③當n=2k-1時,點在各象限的角平分線上,則點Mn
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=k1x+b與雙曲線相交于A(1,2),B(m,-1)兩點.
(1)求直線和雙曲線的表達式;
(2)求直線AB與x軸的交點C的坐標及ΔAOB的面積;
(3)觀察圖像,請直接寫出使不等式k1x+b>成立的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6cm,BC=12cm,點P從點A出發(fā)沿AB以1cm/s的速度向點B移動;同時,點Q從點B出發(fā)沿BC以2cm/s的速度向點C移動,幾秒種后△DPQ的面積為31cm2?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC的邊AB繞著點A順時針旋轉α(0°<α<90°)得到AB′,邊AC繞著點A逆時針旋轉β(0°<β<90°)得到AC′,連結B′C′,當α+β=60°時,我們稱△AB′C’是△ABC的“蝴蝶三角形”,已知一直角邊長為2的等腰直角三角形,那么它的“蝴蝶三角形”的面積為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】體育組為了了解九年級450名學生排球墊球的情況,隨機抽查了九年級部分學生進行排球墊球測試(單位:個),根據(jù)測試結果,制成了下面不完整的統(tǒng)計圖表:
組別 | 個數(shù)段 | 頻數(shù) | 頻率 |
1 | 5 | 0.1 | |
2 | 21 | 0.42 | |
3 | |||
4 |
(1)表中的數(shù) , ;
(2)估算該九年級排球墊球測試結果小于10的人數(shù);
(3)排球墊球測試結果小于10的為不達標,若不達標的5人中有3個男生,2個女生,現(xiàn)從這5人中隨機選出2人調查,試通過畫樹狀圖或列表的方法求選出的2人為一個男生一個女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售一種成本為40元千克的商品,若按50元千克銷售,一個月可售出500千克,現(xiàn)打算漲價銷售,據(jù)市場調查,漲價x元時,月銷售量為m千克,m是x的一次函數(shù),部分數(shù)據(jù)如下表:
觀察表中數(shù)據(jù),直接寫出m與x的函數(shù)關系式:_______________:當漲價5元時,計算可得月銷售利潤是___________元;
當售價定多少元時,會獲得月銷售最大利潤,求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+3(a≠0)過A(4,4),B(2,m)兩點,點B到拋物線對稱軸的距離記為d,滿足0<d≤1,則實數(shù)m的取值范圍是( 。
A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+3過A(﹣3,0),B(1,0)兩點,交y軸于點C.
(1)求該拋物線的表達式.
(2)設P是該拋物線上的動點,當△PAB的面積等于△ABC的面積時,求P點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com