【題目】如果兩個(gè)圓只有一個(gè)公共點(diǎn),那么我們稱這兩個(gè)圓相切,這個(gè)公共點(diǎn)就叫做切點(diǎn),當(dāng)兩圓相切時(shí),如果其中一個(gè)圓(除切點(diǎn)外)在另一個(gè)圓的內(nèi)部,叫做這兩個(gè)圓內(nèi)切;其中一個(gè)圓(除切點(diǎn)外)在另一個(gè)圓的外部,叫做這兩個(gè)圓外切.如圖所示:兩圓的半徑分別為R,r(R>r),兩圓的圓心之間的距離為d,若兩個(gè)圓外切則d=R+r,若兩個(gè)圓內(nèi)切則d=R﹣r,已知兩圓的半徑分別為方程x2+mx+3=0的兩個(gè)根,當(dāng)兩圓相切時(shí),已知這兩個(gè)圓的圓心之間的距離為4,則m的值為 .
【答案】-4或-2
【解析】解:當(dāng)兩圓外切時(shí),d=r+R=﹣m=4,
解得:m=﹣4;
當(dāng)兩圓內(nèi)切時(shí),d=R﹣r=4,
則R=r+4,
∵Rr=3,
∴(r+4)r=3,
解得:r= ﹣2或r= +2(舍去)
∴R=r+4= +2,
∴R+r=﹣m,
即: ﹣2+ +2=﹣m,
解得:m=﹣2 ,
所以答案是:﹣4或﹣2 .
【考點(diǎn)精析】關(guān)于本題考查的圓與圓的位置關(guān)系,需要了解兩圓之間有五種位置關(guān)系:無(wú)公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有兩個(gè)公共點(diǎn)的叫相交.兩圓圓心之間的距離叫做圓心距.兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內(nèi)切P=R-r;內(nèi)含P<R-r.才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)y= ,下列說(shuō)法錯(cuò)誤的是( )
A.這個(gè)函數(shù)的圖象位于第一、第三象限
B.這個(gè)函數(shù)的圖象既是軸對(duì)稱圖形又是中心對(duì)稱圖形
C.當(dāng)x>0時(shí),y隨x的增大而增大
D.當(dāng)x<0時(shí),y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】濟(jì)南市某儲(chǔ)運(yùn)部緊急調(diào)撥一批物資,調(diào)進(jìn)物資共用6小時(shí),調(diào)進(jìn)物資3小時(shí)后開(kāi)始調(diào)出物資(調(diào)進(jìn)物資與調(diào)出物資的速度均保持不變).儲(chǔ)運(yùn)部庫(kù)存物資S(噸)與時(shí)間t(小時(shí))之間的函數(shù)關(guān)系如圖所示,這批物資從開(kāi)始調(diào)進(jìn)到全部調(diào)出需要的時(shí)間是( )
A. 6.2小時(shí) B. 6.4小時(shí) C. 6.6小時(shí) D. 6.8小時(shí)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C、D是⊙O上一點(diǎn),∠CDB=20°,過(guò)點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)E,則∠E等于( )
A.40°
B.50°
C.60°
D.70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中, ∠C=90°,DE為AB的垂直平分線,D為垂足,且EC=DE,則∠B 度數(shù)為__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲地到乙地,先是一段平路,然后是一段上坡路。小明騎車從甲地出發(fā),到達(dá)乙地后立即原路返回甲地,途中休息了一段時(shí)間。假設(shè)小明騎車在平路、上坡、下坡時(shí)分別保持勻速前進(jìn).已知小明騎車上坡的速度比平路上的速度每小時(shí)少5km,下坡的速度比在平路上的速度每小時(shí)多5km。設(shè)小明出發(fā)xh后,到達(dá)離甲地y km的地方,圖中的折線OABCDE表示y與x之間的函數(shù)關(guān)系.
(1)小明騎車在平路上的速度為 km/h;他途中休息了 h;
(2)求線段AB,BC所表示的y與之間的函數(shù)關(guān)系式;
(3)如果小明兩次經(jīng)過(guò)途中某一地點(diǎn)的時(shí)間間隔為0.15h,那么該地點(diǎn)離甲地多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E、F分別是BC、CD上的點(diǎn).且∠EAF=60°.探究圖中線段BE、EF、FD之間的數(shù)量關(guān)系.
小王同學(xué)探究此問(wèn)題的方法是,延長(zhǎng)FD到點(diǎn)G,使DG=BE.連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是 ;
探索延伸:
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E、F分別是BC、CD上的點(diǎn),且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說(shuō)明理由;
實(shí)際應(yīng)用:
如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn)1.5小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F處,且兩艦艇之間的夾角為70°,試求此時(shí)兩艦艇之間的距離?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】騎共享單車已成為人們喜愛(ài)的一種綠色出行方式.已知A、B、C三家公司的共享單車都是按騎車時(shí)間收費(fèi),標(biāo)準(zhǔn)如下:
公司 | 單價(jià)(元/半小時(shí)) | 充值優(yōu)惠 |
A | m | 充20元送5元,即:充20元實(shí)得25元 |
B | m-0.2 | 無(wú) |
C | 1 | 充20元送20元,即:充20元實(shí)得40元 |
(注:使用這三家公司的共享單車,不足半小時(shí)均按半小時(shí)計(jì)費(fèi).用戶的賬戶余額長(zhǎng)期有效,但不可提現(xiàn).)
4月初,李明注冊(cè)成了A公司的用戶,張紅注冊(cè)成了B公司的用戶,并且兩人在各自賬戶上分別充值20元.一個(gè)月下來(lái),李明、張紅兩人使用單車的次數(shù)恰好相同,且每次都在半小時(shí)以內(nèi),結(jié)果到月底李明、張紅的賬戶余額分別顯示為5元、8元.
(1)求m的值;
(2)5月份,C公司在原標(biāo)準(zhǔn)的基礎(chǔ)上又推出新優(yōu)惠:每月的月初給用戶送出5張免費(fèi)使用券(1
次用車只能使用1張券).如果王磊每月使用單車的次數(shù)相同,且在30次以內(nèi),每次用車都不超過(guò)
半小時(shí). 若要在這三家公司中選擇一家并充值20元,僅從資費(fèi)角度考慮,請(qǐng)你幫他作出選擇,并說(shuō)
明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:
①4a+b=0;
②9a+c<3b;
③25a+5b+c=0;
④當(dāng)x>2時(shí),y隨x的增大而減。
其中正確的結(jié)論有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com