【題目】如圖,∠AGF=∠ABC,∠ 1+∠ 2=180°.
(1)試判斷BF與DE的位置關系,并說明理由;
(2)若BF⊥AC,∠CDE=30°,求∠AFG的度數(shù).
【答案】(1)BF∥DE,理由解析;(2)60°
【解析】
(1)先結合圖形猜想DE∥BF,由平行線的判定可知只需證∠2+∠3=180°,根據(jù)平行線的性質結合已知條件即可求證;
(2)根據(jù)補角的定義及已知∠ 1+∠ 2=180°,可求得∠1 =30°,再根據(jù)余角的定義即可求得答案.
(1)BF與DE的位置關系是:BF∥DE.
理由:∵∠AGF=∠ABC,
∴BC∥GF(同位角相等,兩直線平行),
∴∠1=∠3;
又∵∠1+∠2=180°,
∴∠2+∠3=180°,
∴BF∥DE;
(2)∵BF∥DE,BF⊥AC,
∴DE⊥AC,
∵∠CDE=30°,∠CDE +∠2=180°
∵∠1+∠2=180°,
∴∠1=∠CDE=30°,
∴∠AFG=90°-30°=60°.
科目:初中數(shù)學 來源: 題型:
【題目】用配方法解下列方程,其中應在方程左右兩邊同時加上4的是( �。�
A. x2﹣2x=5 B. x2+4x=5 C. 2x2﹣4x=5 D. 4x2+4x=5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC.
(1)求∠MON的度數(shù);
(2)如果∠AOB=α,其他條件不變,求∠MON的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象經過A(2,0),B(0,﹣6)兩點,
(1)求這個二次函數(shù)的解析式;
(2)設該二次函數(shù)的對稱軸與x軸交于點C,連接BA,BC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,G為BC邊上一點,BE⊥AG于E,DF⊥AG于F,連接DE.
(1)求證:△ABE≌△DAF;
(2)若AF=1,四邊形ABED的面積為6,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知矩形,
為
邊上一點,
,點
從
點出發(fā),以每秒
個單位的速度沿著
邊向終點
運動,連接
,設點
運動的時間為
秒,則當
的值為__________時,
是以
為腰的等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在三角形中,
.將三角形
繞著點
旋轉,使得點
落在直線
上的點
,點
落在點
.
(1)畫出旋轉后的三角形.
(2)求線段在旋轉的過程中所掃過的面積(保留
).
(3)如果在三角形中,
(其中
).其他條件不變,請你用含有
的代數(shù)式,直接寫出線段
旋轉的過程中所掃過的面積(保留
).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,四邊形ABCD是正方形,G是CD邊上的一個動點(點G與C、D不重合),以CG為一邊在正方形ABCD外作正方形CEFG,連接BG,DE.
(1)①猜想圖1中線段BG、線段DE的長度關系及所在直線的位置關系,不必證明;
②將圖1中的正方形CEFG繞著點C按順時針方向旋轉任意角度α,得到如圖2情形.請你通過觀察、測量等方法判斷①中得到的結論是否仍然成立,并證明你的判斷.
(2)將原題中正方形改為矩形(如圖3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)題①中得到的結論哪些成立,哪些不成立?若成立,以圖4為例簡要說明理由.
(3)在第(2)題圖4中,連接DG、BE,且a=3,b=2,k=,求BE2+DG2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘.在整個步行過程中,甲、乙兩人的距離(米)與甲出發(fā)的時間
(分)之間的關系如圖所示,下列結論:①甲步行的速度為60米/分;②乙用16分鐘追上甲;③乙走完全程用了30分鐘;④乙到達終點時甲離終點還有360米.其中正確的結論有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com