如圖,正方形的面積為36cm2,M是對角線AC上一點,且ME⊥AB于E,MF⊥BC于F,則ME+MF=________cm.

6
分析:先根據(jù)正方形的面積求出其邊長,再由正方形的性質及ME⊥AB于E求出△AEM是等腰直角三角形,即AE=EM,由MF⊥BC于F可得四邊形EBFM是矩形,即BE=MF,由此兩個結論通過等量代換便可解答.
解答:∵正方形的面積為36cm2,∴AB=BC=6cm,
∵AC是正方形ABCD的對角線,∴∠MAE=45°,
∵ME⊥AB于E,∴∠AEM=90°,
∴∠AME=45°,AE=EM…①,
∵ME⊥AB于E,MF⊥BC于F,∠EBF=90°,
∴四邊形EBFM是矩形,∴BE=MF…②,
∴ME+MF=AE+BE=AB=6cm.
故答案為6
點評:此題比較簡單,考查的是正方形的性質及矩形、等腰直角三角形的判定定理.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、如圖,正方形的面積為36cm2,M是對角線AC上一點,且ME⊥AB于E,MF⊥BC于F,則ME+MF=
6
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正方形的面積為48平方厘米,它的四個角是面積為3厘米2的小正方形,現(xiàn)將四個角剪掉,制作一個無蓋的長方體盒子,求這個長方體的體積是多少?(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正方形的面積為12, 的中點,連接、,則圖中陰影部分的面積是                                              (▲ )

A.6         B. 4.8        C. 4          D. 3

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正方形的面積為12,的中點,連接、,則圖中陰影部分的面積是                                             ( ▲ )
A.6B.4.8C.4 D.3

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省無錫市新區(qū)九年級二模數(shù)學卷(解析版) 題型:選擇題

如圖,正方形的面積為12, 的中點,連接、,則圖中陰影部分的面積是                                              ( ▲ )

A.6          B. 4.8        C. 4          D. 3

 

查看答案和解析>>

同步練習冊答案