【題目】解方程(組):

1 (2)

3 4

5 6

【答案】1y=1;(2x=-1,(3x=,(4;(5;(6

【解析】試題分析:(1)移項,合并同類項,系數(shù)化為1即可求出方程的解;

(2)去括號,移項,合并同類項,系數(shù)化為1即可求出方程的解;

(3)去分母,去括號,移項,合并同類項,系數(shù)化為1即可求出方程的解;

(4)運(yùn)用代入消元法求解即可;

(5)運(yùn)用加減消元法求解即可;

(6)運(yùn)用代入消元法求解即可.

試題解析:1

2y-11y=3-6,

-9y=-9,

y=1;

(2) (x+1)-2(x-1)=1-3x,

x+1-2x+2=1-3x,

x-x+3x=-1-2+1,

3x=-3,

x=-1;

3

5(4-x)=3(x-3)-15,

20-5x=3x-9-15,

-5x-3x=-20-9-15,

-8x=-44,

x=

4

①代入②得,3y+2+3y=8

6y=6

y=1,

y=1代入①得:x=5.

∴方程組的解為:

5

①-②得,-9y=-9

y=1;

y=1代入得:4x=8

x=2

∴方程組的解為:

6

方程變形為:

×3-②×2得,-5y=4

y=-0.8

y=-0.8代入①得,2x+5.6=8

x=1.2

∴方程組的解為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A在函數(shù)圖像上,過點Ax軸和y軸的平行線分別交函數(shù)圖像于點B、C,直線BC與坐標(biāo)軸的交點為DE.當(dāng)點A在函數(shù)圖像上運(yùn)動時,

1設(shè)點A橫坐標(biāo)為a,則點B的坐標(biāo)為 ,點C的坐標(biāo)為 (用含a的字母表示);

2ABC的面積是否發(fā)生變化?若不變,求出△ABC的面積,若變化,請說明理由;

(3)請直接寫出BDCE滿足的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程

1

2

3

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kx+7的圖像經(jīng)過點A(2,3)

(1)求k的值;

(2)判斷點B(-1,8),C(3,1)是否在這個函數(shù)的圖像上,并說明理由;

(3)當(dāng)-3<x<-1時,求y的取值范圍

【答案】(1)k=-2(2)點B不在,點C在,(3)9<y<13

【解析】

試題分析:(1)把點A(2,3)代入y=kx+7即可求出k的值;(2)點B(-1,8),C(3,1)的橫坐標(biāo)代入函數(shù)解析式驗證即可;(3)根據(jù)x的取值范圍,即可求出y的取值范圍

試題解析:(1)把點A(2,3)代入y=kx+7得:k=-2

(2)當(dāng)x=-1時,y=-2×(-1)+7=9

98點B不在拋物線上

當(dāng)x=3時,y=-2×3+7=1

點C在拋物線上

(3)當(dāng)x=-3時,y=13,當(dāng)x=-,1時,y=9,所以9<y<13

考點:一次函數(shù)

型】解答
結(jié)束】
24

【題目】順豐快遞公司派甲、乙兩車從A地將一批物品勻速運(yùn)往B地,甲出發(fā)0.5h后乙開始出發(fā),結(jié)果比甲早1h)到達(dá)B地,如圖,線段OPMN分別表示甲、乙兩車離A地的距離Skm)與時間th)的關(guān)系,a表示A、B兩地之間的距離.請結(jié)合圖中的信息解決如下問題:

1)分別計算甲、乙兩車的速度及a的值;

2)乙車到達(dá)B地后以原速立即返回,請問甲車到達(dá)B地后以多大的速度立即勻速返回,才能與乙車同時回到A地?并在圖中畫出甲、乙兩車在返回過程中離A地的距離Skm)與時間th)的函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖的方格中,每個小正方形的邊長都為1,△ABC的頂點均在格點上.在建立平面直角坐標(biāo)系后,點B的坐標(biāo)為(﹣1,2).

(1)把△ABC向下平移8個單位后得到對應(yīng)的△A1B1C1,畫出△A1B1C1;

(2)畫出與△A1B1C1關(guān)于y軸對稱的△A2B2C2

(3)若點P(a,b)是△ABC邊上任意一點,P2是△A2B2C2邊上與P對應(yīng)的點,寫出P2的坐標(biāo)為    ;

(4)試在y軸上找一點Q(在圖中標(biāo)出來),使得點Q到B2、C2兩點的距離之和最小,并求出QB2+QC2的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E,F分別是ABCD上的點,點GBC的延長線上一點,且∠B=∠DCG=∠D,則下列判斷中,錯誤的是(   )

A. AEF=∠EFC B. A=∠BCF C. AEF=∠EBC D. BEF+∠EFC=180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從①∠1=∠2 ②∠C=∠D ③∠A=∠F 三個條件中選出兩個作為已知條件,另一個作為結(jié)論所組成的命題中,正確命題的個數(shù)為( 。

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y1kxb的圖像經(jīng)過點(0,-2),(2,2).

(1)求一次函數(shù)的表達(dá)式,并在所給直角坐標(biāo)系中畫出此函數(shù)的圖像;;

(2)根據(jù)圖像回答:當(dāng)x 時,y1=0;

(3)求直線y1kxb、直線y2=-2x+4與y軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以AOB的頂點O為圓心,適當(dāng)長為半徑畫弧,交OA于點C,交OB于點D.再分別以點C、D為圓心,大于CD的長為半徑畫弧,兩弧在AOB內(nèi)部交于點E,過點E作射線OE,連CD.則下列說法錯誤的是

A.射線OEAOB的平分線

BCOD是等腰三角形

CC、D兩點關(guān)于OE所在直線對稱

DO、E兩點關(guān)于CD所在直線對稱

查看答案和解析>>

同步練習(xí)冊答案