3 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||||
B、
| ||||||
C、
| ||||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、(4,-2) | ||
B、(4,2) | ||
C、(2
| ||
D、(-2,2
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
⑴操作:如圖23-1,O是邊長為a的正方形ABCD的中心,將一塊半徑足夠長、圓心角為直角的扇形紙板的圓心放在O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).
求證:正方形ABCD的邊被紙板覆蓋部分的總長度為定值a.
⑵思考:如圖23-2,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正三角形或邊長為a的正五邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).當(dāng)扇形紙板的圓心角為__________時(shí),正三角形的邊被紙板覆蓋部分的總長度為定值a;如圖23-3,當(dāng)扇形紙板的圓心角為_________時(shí),正五邊形的邊被紙板覆蓋部分的總長度為定值a.(直接填空)
⑶探究:一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn),當(dāng)扇形紙板的圓心角為________度時(shí),正n邊形的邊被紙板覆蓋部分的總長度為定值a;
這時(shí)正n邊形被紙板覆蓋部分的面積是否也為定值?若為定值,寫出它與正n邊形面積S之間的關(guān)系(不需證明);若不是定值,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
⑴操作:如圖23-1,O是邊長為a的正方形ABCD的中心,將一塊半徑足夠長、圓心角為直角的扇形紙板的圓心放在O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).
求證:正方形ABCD的邊被紙板覆蓋部分的總長度為定值a.
⑵思考:如圖23-2,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正三角形或邊長為a的正五邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).當(dāng)扇形紙板的圓心角為__________時(shí),正三角形的邊被紙板覆蓋部分的總長度為定值a;如圖23-3,當(dāng)扇形紙板的圓心角為_________時(shí),正五邊形的邊被紙板覆蓋部分的總長度為定值a.(直接填空)
⑶探究:一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn),當(dāng)扇形紙板的圓心角為________度時(shí),正n邊形的邊被紙板覆蓋部分的總長度為定值a;
這時(shí)正n邊形被紙板覆蓋部分的面積是否也為定值?若為定值,寫出它與正n邊形面積S之間的關(guān)系(不需證明);若不是定值,請(qǐng)說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com