【題目】如圖,直線與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C、D分別為線段AB、OB的中點(diǎn),點(diǎn)P為OA上一動(dòng)點(diǎn),PC+PD值最小時(shí)點(diǎn)P的坐標(biāo)為( )
A.(﹣3,0) B.(﹣6,0) C.(,0) D.(,0)
【答案】C.
【解析】
試題分析:作點(diǎn)D關(guān)于x軸的對(duì)稱點(diǎn)D′,連接CD′交x軸于點(diǎn)P,此時(shí)PC+PD值最小,如圖所示.
令中x=0,則y=4,∴點(diǎn)B的坐標(biāo)為(0,4);
令中y=0,則,解得:x=﹣6,∴點(diǎn)A的坐標(biāo)為(﹣6,0).
∵點(diǎn)C、D分別為線段AB、OB的中點(diǎn),∴點(diǎn)C(﹣3,2),點(diǎn)D(0,2).
∵點(diǎn)D′和點(diǎn)D關(guān)于x軸對(duì)稱,∴點(diǎn)D′的坐標(biāo)為(0,﹣2).
設(shè)直線CD′的解析式為y=kx+b,∵直線CD′過點(diǎn)C(﹣3,2),D′(0,﹣2),∴,解得:,∴直線CD′的解析式為.
令中y=0,則0=,解得:x=,∴點(diǎn)P的坐標(biāo)為(,0).
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年5月,某大型商業(yè)集團(tuán)隨機(jī)抽取所屬的部分商業(yè)連鎖店進(jìn)行評(píng)估,將抽取的各商業(yè)連鎖店按照評(píng)估成績(jī)分成了、、、四個(gè)等級(jí),并繪制了如下不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖.
根據(jù)以上信息,解答下列問題:
(1)本次評(píng)估隨機(jī)抽取了多少家商業(yè)連鎖店?
(2)請(qǐng)補(bǔ)充完整扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,并在圖中標(biāo)注相應(yīng)數(shù)據(jù);
(3)從、兩個(gè)等級(jí)的商業(yè)連鎖店中任選2家介紹營(yíng)銷經(jīng)驗(yàn),求其中至少有一家是等級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a、b、c、為△ABC的三邊長(zhǎng),a2+5b2﹣4ab﹣2b+1=0,且△ABC為等腰三角形,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算正確的是( )
A.7a+a=8a2 B.3x2y+2yx2=5x2y
C.8y-6y=2 D.3a+2b=5ab
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形紙片,AB=2,對(duì)折矩形紙片ABCD,使AD與BC重合,折痕為MN,展平后再過點(diǎn)B折疊矩形紙片,使點(diǎn)A落在MN上的點(diǎn)G處,折痕BE與MN相交于點(diǎn)H;再次展平,連接BG,EG,延長(zhǎng)EG交BC于點(diǎn)F.有如下結(jié)論: ①EG=FG;②∠ABG=60°;③AE=1;④△BEF是等邊三角形;其中正確結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).
(1)請(qǐng)?jiān)趫D中,畫出△ABC向左平移6個(gè)單位長(zhǎng)度后得到的△A1B1C1;
(2)以點(diǎn)O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請(qǐng)?jiān)趫D中y軸右側(cè),畫出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,對(duì)角線AC的垂直平分線交AD、BC于點(diǎn)E、F,AC與EF交于點(diǎn)O,連結(jié)AF、CE.
(1)求證:四邊形AFCE是菱形;
(2)若AB=3,AD=4,求菱形AFCE的邊長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com