已知:如圖,AB是⊙O的直徑,PB切⊙O于點(diǎn)B,PA交⊙O于點(diǎn)C,∠APB是平分線分別交BC,AB于點(diǎn)D、E,交⊙O于點(diǎn)F,∠A=60°,并且線段AE、BD的長(zhǎng)是一元二次方程 x2-kx+2=0的兩根(k為常數(shù)).
(1)求證:PA•BD=PB•AE;
(2)求證:⊙O的直徑長(zhǎng)為常數(shù)k;
(3)求tan∠FPA的值.

【答案】分析:(1)由PB切⊙O于點(diǎn)B,根據(jù)弦切角定理,可得∠PBD=∠A,又由PF平分∠APB,可證得△PBD∽△PAE,然后由相似三角形的對(duì)應(yīng)邊成比例,證得PA•BD=PB•AE;
(2)易證得BE=BD,又由線段AE、BD的長(zhǎng)是一元二次方程 x2-kx+2=0的兩根(k為常數(shù)),即可得AE+BD=k,繼而求得AB=k,即:⊙O的直徑長(zhǎng)為常數(shù)k;
(3)由∠A=60°,并且線段AE、BC的長(zhǎng)是一元二次方程 x2-kx+2=0的兩根(k為常數(shù)),可求得AE與BD的長(zhǎng),繼而求得tan∠FPB的值,則可得tan∠FPA的值.
解答:(1)證明:如圖,
∵PB切⊙O于點(diǎn)B,
∴∠PBD=∠A,
∵PF平分∠APB,
∴∠APE=∠BPD,
∴△PBD∽△PAE,
∴PB:PA=BD:AE,
∴PA•BD=PB•AE;(2分)

(2)證明:如圖,
∵∠BED=∠A+∠EPA,∠BDE=∠PBD+∠BPD.
又∵∠PBD=∠A,∠EPA=∠BPD,
∴∠BED=∠BDE.
∴BE=BD.
∵線段AE、BD的長(zhǎng)是一元二次方程 x2-kx+2=0的兩根(k為常數(shù)),
∴AE+BD=k,
∴AE+BD=AE+BE=AB=k,
即⊙O直徑為常數(shù)k.(5分)

(3)∵PB切⊙O于B點(diǎn),AB為直徑.
∴∠PBA=90°.
∵∠A=60°.
∴PB=PA•sin60°=PA,
又∵PA•BD=PB•AE,
∴BD=AE,
∵線段AE、BD的長(zhǎng)是一元二次方程 x2-kx+2=0的兩根(k為常數(shù)).
∴AE•BD=2,
AE2=2
解得:AE=2,BD=,
∴AB=k=AE+BD=2+,BE=BD=,
在Rt△PBA中,PB=AB•tan60°=(2+)×=3+2
在Rt△PBE中,tan∠BPF===2-,
∵∠FPA=∠BPF,
∴tan∠FPA=2-
點(diǎn)評(píng):此題考查了切線的性質(zhì)、等腰三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)以及根與系數(shù)的關(guān)系等知識(shí).此題難度較大,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、已知:如圖,AB是⊙O的直徑,BC是和⊙O相切于點(diǎn)B的切線,⊙O的弦AD平行于OC.
求證:DC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•門頭溝區(qū)一模)已知:如圖,AB是⊙O的直徑,AC是⊙O的弦,M為AB上一點(diǎn),過點(diǎn)M作DM⊥AB,交弦AC于點(diǎn)E,交⊙O于點(diǎn)F,且DC=DE.
(1)求證:DC是⊙O的切線;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•昆明)已知:如圖,AB是⊙O的直徑,直線MN切⊙O于點(diǎn)C,AD⊥MN于D,AD交⊙O于E,AB的延長(zhǎng)線交MN于點(diǎn)P.求證:AC2=AE•AP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•平谷區(qū)二模)已知,如圖,AB是⊙O的直徑,點(diǎn)E是
AD
的中點(diǎn),連接BE交AC于點(diǎn)G,BG的垂直平分線CF交BG于H交AB于F點(diǎn).
(1)求證:BC是⊙O的切線;
(2)若AB=8,BC=6,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,AB是⊙O的直徑,BC為⊙O的切線,過點(diǎn)B的弦BD⊥OC交⊙O于點(diǎn)D,垂足為E.
(1)求證:CD是⊙O的切線;
(2)當(dāng)BC=BD,且BD=12cm時(shí),求圖中陰影部分的面積(結(jié)果不取近似值).

查看答案和解析>>

同步練習(xí)冊(cè)答案