【題目】已知二次函數(shù)yax2bx6的圖像開口向下,與x軸交于點(diǎn)A(-6,0)和點(diǎn)B2,0),與y軸交于點(diǎn)C,點(diǎn)P是該函數(shù)圖像上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合)

1 求二次函數(shù)的關(guān)系式;

2)如圖1當(dāng)點(diǎn)P是該函數(shù)圖像上一個(gè)動(dòng)點(diǎn)且在線段的上方,若PCA的面積為12,求點(diǎn)P的坐標(biāo);

3)如圖2,該函數(shù)圖像的頂點(diǎn)為D,在該函數(shù)圖像上是否存在點(diǎn)E,使得∠EAB2DAC,若存在請(qǐng)直接寫出點(diǎn)E的坐標(biāo);若不存在請(qǐng)說明理由.

【答案】1 ;2)(﹣2,8)或(﹣4,6);(3 .

【解析】

1)由題意設(shè)函數(shù)的表達(dá)式為:結(jié)合已知函數(shù)解析式即可求解;

2)由點(diǎn)P在線段的上方,設(shè)連接 ,從而可得答案;

3)證明為直角三角形,延長DCD′使CD=CD′,連接AD′,過點(diǎn)DDHAD′,計(jì)算sinDAC ,sin2DAC=sinDAD′得到sinEABtanEAB ,利用一次函數(shù)的性質(zhì)得一次函數(shù)是解析式,聯(lián)立解析式解方程組即可求解.

解:(1 拋物線與x軸交于點(diǎn)A(-6,0)和點(diǎn)B2,0),

設(shè)函數(shù)的表達(dá)式為:

二次函數(shù)

解得:

函數(shù)的表達(dá)式為:

2)如圖1所示,的上方,

連接

設(shè)

代入

解得:

所以點(diǎn)P坐標(biāo)為

3 拋物線為:,為頂點(diǎn),

延長DCD′使CD=CD′,連接AD′

過點(diǎn)DDHAD′,

即:

解得:

EAB2DAC,

①當(dāng)點(diǎn)EAB上方時(shí), 則直線AE的表達(dá)式為:

將點(diǎn)坐標(biāo)代入上式:

直線AE的表達(dá)式為:

解得: (舍去)

即點(diǎn)

②當(dāng)點(diǎn)EAB下方時(shí),

設(shè)直線為:

將點(diǎn)坐標(biāo)代入上式:

直線為:

解得: (舍去)

綜上,點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)承接了27000件產(chǎn)品的生產(chǎn)任務(wù),計(jì)劃安排甲、乙兩個(gè)車間的共50名工人,合作生產(chǎn)20天完成.已知甲、乙兩個(gè)車間利用現(xiàn)有設(shè)備,工人的工作效率為:甲車間每人每天生產(chǎn)25件,乙車間每人每天生產(chǎn)30件.

1)求甲、乙兩個(gè)車間各有多少名工人參與生產(chǎn)?

2)為了提前完成生產(chǎn)任務(wù),該企業(yè)設(shè)計(jì)了兩種方案:

方案一 甲車間租用先進(jìn)生產(chǎn)設(shè)備,工人的工作效率可提高20%,乙車間維持不變.

方案二 乙車間再臨時(shí)招聘若干名工人(工作效率與原工人相同),甲車間維持不變.

設(shè)計(jì)的這兩種方案,企業(yè)完成生產(chǎn)任務(wù)的時(shí)間相同.

①求乙車間需臨時(shí)招聘的工人數(shù);

②若甲車間租用設(shè)備的租金每天900元,租用期間另需一次性支付運(yùn)輸?shù)荣M(fèi)用1500元;乙車間需支付臨時(shí)招聘的工人每人每天200元.問:從新增加的費(fèi)用考慮,應(yīng)選擇哪種方案能更節(jié)省開支?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=x經(jīng)過點(diǎn)A,作ABx軸于點(diǎn)B,將ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到CBD,若點(diǎn)B的坐標(biāo)為(2,0),則點(diǎn)C的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形AOBC的邊AOx軸的負(fù)半軸上,邊OBy軸的負(fù)半軸上.且AO12OB9.拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A和點(diǎn)B

1)求拋物線的表達(dá)式;

2)在第二象限的拋物線上找一點(diǎn)M,連接AM,BMAB,當(dāng)ABM面積最大時(shí),求點(diǎn)M的坐標(biāo);

3)點(diǎn)D是線段AO上的動(dòng)點(diǎn),點(diǎn)E是線段BO上的動(dòng)點(diǎn),點(diǎn)F是射線AC上的動(dòng)點(diǎn),連接EF,DF,DEBD,且EF是線段BD的垂直平分線.當(dāng)CF1時(shí).

①直接寫出點(diǎn)D的坐標(biāo)   ;

②若DEF的面積為30,當(dāng)拋物線y=﹣x2+bx+c經(jīng)過平移同時(shí)過點(diǎn)D和點(diǎn)E時(shí),請(qǐng)直接寫出此時(shí)的拋物線的表達(dá)式   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是矩形,以點(diǎn)為圓心、為半徑畫弧交于點(diǎn).若恰好為的中點(diǎn).

1_______

2平分嗎?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 在矩形紙片中, 點(diǎn),分別是,的中點(diǎn), 點(diǎn),分別在,上, .沿折疊, 點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),將沿折疊, 點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),當(dāng)四邊形為菱形時(shí), _______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,3,5上一點(diǎn),連結(jié),將沿翻折,使點(diǎn)的對(duì)應(yīng)點(diǎn)落在邊上,則的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長為的網(wǎng)格中,點(diǎn),點(diǎn)均落在格點(diǎn)上,的直徑.

1的長等于__________;

2)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出一個(gè)以為斜邊、面積為,并簡要說明點(diǎn)的位置是如何找到的(不要求證明)__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角板是我們學(xué)習(xí)數(shù)學(xué)的好幫手.將一對(duì)直角三角板如圖放置,點(diǎn)CFD的延長線上,點(diǎn)BED上,ABCF,∠F=∠ACB90°,∠E45°,∠A60°,AC10,則CD的長度是_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案