【題目】如圖,已知拋物線經(jīng)過點A(3,1)與點B(0,4).
(1)求該拋物線的解析式及頂點坐標;
(2)在第三象限內的拋物線上有一點P,使得PA⊥AB,求點P的坐標;
(3)若點C(,)在該拋物線上,當≤≤3時,1≤≤5,請確定的取值范圍.
【答案】(1) , 頂點坐標為(1,5); (2)點P的坐標為(-2,-4); (3) 的取值范圍是:-1≤≤1.
【解析】
(1)將代入,解關于b、c的二元一次方程組,得到解析式進而求出頂點坐標;
(2)分別過B與點P作軸的平行線BD、PE,過點A作軸的垂線交BD于D、交PE于點E,證出AE=PE,設點P的坐標為,分別用含m的代數(shù)式表示出AE和PE的長,進而求出點P的坐標;
(3)根據(jù)題意,分別求出q的最大值與最小值,從而確定q的取值范圍.
(1)將代入得
解得
∴,
∴所求的拋物線的解析式為:, 頂點坐標為(1,5)
(2)如圖,分別過B與點P作軸的平行線BD、PE,過點A作軸的垂線交BD于D、交PE于點E
∵PA⊥AB
∴
∴∠DAB+∠PAE=90°.
由A(3,1)、B(0,4)知BD=AD=3
∴∠DAB=45°
∴∠PAE=90°-∠DAB=90°-45°=45°
∴∠PAE=∠APE=45°
∴AE=PE
設點P的坐標為則
AE=
PE=
∴
解得:或(點P在第三象限,不合題意,舍去)
∴時,
∴點P的坐標為(-2,-4).
(3)∵1≤n≤5且拋物線的頂點為(1,5)
∴區(qū)間包含頂點
∴的最大值為1
在中,當時,或者
∴的最小值為-1
∴的取值范圍是:-1≤≤1.
科目:初中數(shù)學 來源: 題型:
【題目】教材呈現(xiàn):下圖是華師版八年級上冊數(shù)學教材第94頁的部分內容.
線段垂直平分線
我們已知知道線段是軸對稱圖形,線段的垂直一部分線是線段的對稱軸,如圖直線是線段的垂直平分線,是上任一點,連結、,將線段與直線對稱,我們發(fā)現(xiàn)與完全重合,由此都有:線段垂直平分線的性質定理,線段垂直平分線上的點到線段的距離相等.
已知:如圖,,垂足為點,,點是直線上的任意一點.
求證:.
圖中的兩個直角三角形和,只要證明這兩個三角形全等,便可證明(請寫出完整的證明過程)
請根據(jù)教材中的分析,結合圖①,寫出“線段垂直平分線的性質定理”完整的證明過程,定理應用.
(1)如圖②,在中,直線、、分別是邊、、的垂直平分線.
求證:直線、、交于點.
(2)如圖③,在中,,邊的垂直平分線交于點,邊的垂直平分線交于點,若,,則的長為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校組織全校學生進行了一次“社會主義核心價值觀”知識競賽,賽后隨機抽取了各年級部分學生成績進行統(tǒng)計,制作如下頻數(shù)分布表和頻數(shù)分布直方圖.請根據(jù)圖表中提供的信息,解答下列問題:
分數(shù)段(表示分數(shù)) | 頻數(shù) | 頻率 |
4 | 0.1 | |
8 | ||
0.3 | ||
10 | 0.25 | |
6 | 0.15 |
(1)請求出該校隨機抽取了____學生成績進行統(tǒng)計;
(2)表中____,____,并補全直方圖;
(3)若用扇形統(tǒng)計圖描述此成績統(tǒng)計分布情況,則分數(shù)段對應扇形的圓心角度數(shù)是___;
(4)若該校共有學生8000人,請估計該校分數(shù)在的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某養(yǎng)殖場為了響應黨中央的扶貧政策,今年起采用“場內+農(nóng)戶”養(yǎng)殖模式,同時加強對蛋雞的科學管理,蛋雞的產(chǎn)蛋率不斷提高,三月份和五月份的產(chǎn)蛋量分別是2.5萬kg與3.6萬kg,現(xiàn)假定該養(yǎng)殖場蛋雞產(chǎn)蛋量的月增長率相同.
(1)求該養(yǎng)殖場蛋雞產(chǎn)蛋量的月平均增長率;
(2)假定當月產(chǎn)的雞蛋當月在各銷售點全部銷售出去,且每個銷售點每月平均銷售量最多為0.32萬kg.如果要完成六月份的雞蛋銷售任務,那么該養(yǎng)殖場在五月份已有的銷售點的基礎上至少再增加多少個銷售點?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點E ,G是弧AC上的點,AG,DC延長線交于點F.
(1)求證:∠FGC=∠AGD.
(2)若BE=2,CD=8,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是一種推磨工具模型,圖2是它的示意圖,已知AB⊥PQ,AP=AQ=3dm,AB=12dm,點A在中軸線l上運動,點B在以O為圓心,OB長為半徑的圓上運動,且OB=4dm.
(1)如圖3,當點B按逆時針方向運動到B′時,A′B′與⊙O相切,則AA′=__dm.
(2)在點B的運動過程中,點P與點O之間的最短距離為__dm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線經(jīng)過點(﹣2,0),且對稱軸為直線x=1,其部分圖象如圖所示.對于此拋物線有如下四個結論:
①;
②>;
③若n>m>0,則時的函數(shù)值小于時的函數(shù)值;
④點(,0)一定在此拋物線上.
其中正確結論的個數(shù)是( )
A.4個B.3個
C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某辦公樓AB的右邊有一建筑物CD,在建設物CD離地面2米高的點E處觀測辦公樓頂A點,測得的仰角=,在離建設物CD 25米遠的F點觀測辦公樓頂A點,測得的仰角=(B,F,C在一條直線上).
(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.(參考數(shù)據(jù):)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com