【題目】如圖放置的△OAB1 , △B1A1B2 , △B2A2B3 , …都是邊長(zhǎng)為2的等邊三角形,點(diǎn)A在y軸上,點(diǎn)O,B1 , B2 , B3…都在直線l上,則點(diǎn)B2017的坐標(biāo)是

【答案】(2017 ,2017)
【解析】解:過(guò)點(diǎn)B1 作B1 C⊥x軸,

∵△B1A1B2,△B2A2B3,…都是邊長(zhǎng)為2的等邊三角形,

∴OB1=2,∠AOB1=60°,∠B1 OC=30°,

∴OC=OB1 cos30°=2× = ,CB1=OB1 sin30°=2× =1,

∴B1的坐標(biāo)為( ,1),

∴B2的坐標(biāo)為(2 ,2),B3的坐標(biāo)為(3 ,3),B4的坐標(biāo)為(4 ,4),

∴B2017的坐標(biāo)是(2017 ,2017).

所以答案是(2017 ,2017).

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)與式的規(guī)律的相關(guān)知識(shí),掌握先從圖形上尋找規(guī)律,然后驗(yàn)證規(guī)律,應(yīng)用規(guī)律,即數(shù)形結(jié)合尋找規(guī)律.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),OF⊥BC于點(diǎn)F,交⊙O于點(diǎn)E,AE與BC交于點(diǎn)H,點(diǎn)D為OE的延長(zhǎng)線上一點(diǎn),且∠ODB=∠AEC.
(1)求證:BD是⊙O的切線;
(2)求證:CE2=EHEA;
(3)若⊙O的半徑為 ,sinA= ,求BH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點(diǎn)F,交BC的延長(zhǎng)線于點(diǎn)E.

(1)求證:BE=CD;

(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家草莓采摘園的草莓品質(zhì)相同,銷售價(jià)格也相同.“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進(jìn)園需購(gòu)買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進(jìn)園不需購(gòu)買門票,采摘園的草莓超過(guò)一定數(shù)量后,超過(guò)部分打折優(yōu)惠.優(yōu)惠期間,設(shè)某游客的草莓采摘量為x(千克),在甲采摘園所需總費(fèi)用為(元),在乙采摘園所需總費(fèi)用為(元),圖中折線OAB表示與x之間的函數(shù)關(guān)系.

(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價(jià)格是每千克 元;

(2)求、與x的函數(shù)表達(dá)式;

(3)在圖中畫出與x的函數(shù)圖象,并寫出選擇甲采摘園所需總費(fèi)用較少時(shí),草莓采摘量x的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】填寫理由:

已知:如圖,ABC是直線,1=115°,D=65°.

求證:ABDE.

證明:∵ABC是一直線,(已知)

∴∠1+2=180°( )

∵∠1=115°(已知)

∴∠2=65°

又∵∠D=65°(已知)

∴∠2=D

( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在Rt△ACB中,C為直角頂點(diǎn),∠ABC=25°,O為斜邊AB的中點(diǎn),將OA繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)α(0°<α<180°)到OP.當(dāng)△BCP為等腰三角形時(shí),α的度數(shù)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=﹣ x2 x與x軸交于O,A,點(diǎn)B在拋物線上且橫坐標(biāo)為2.

(1)如圖1,△AOB的面積是多少?
(2)如圖1,在線段AB上方的拋物線上有一點(diǎn)K,當(dāng)△ABK的面積最大時(shí),求點(diǎn)K的坐標(biāo)及△ABK的面積;
(3)在(2)的條件下,點(diǎn)H 在y軸上運(yùn)動(dòng),點(diǎn)I在x軸上運(yùn)動(dòng).則當(dāng)四邊形BHIK周長(zhǎng)最小時(shí),求出H、I的坐標(biāo)以及四邊形BHIK周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為順利通過(guò)國(guó)家生態(tài)文明示范區(qū)驗(yàn)收,璧山政府?dāng)M對(duì)城區(qū)部分路段的人行道地磚、綠化帶、排水管道等公用設(shè)施全面更新改造.現(xiàn)有甲、乙兩個(gè)工程隊(duì)有意承包這項(xiàng)工程,經(jīng)調(diào)查知道,乙工程隊(duì)單獨(dú)完成此項(xiàng)工程的時(shí)間是甲工程隊(duì)單獨(dú)完成此項(xiàng)工程時(shí)間的2倍,若甲、乙兩工程隊(duì)合作只需10天完成.

1)甲、乙兩個(gè)工程隊(duì)單獨(dú)完成此項(xiàng)工程各需多少天?

2)市政府決定由甲、乙共同完成此項(xiàng)工程.若甲工程隊(duì)每天的工程費(fèi)用是4.5萬(wàn)元,乙工程隊(duì)每天的工程費(fèi)用是2.5萬(wàn)元,若工程費(fèi)用不超過(guò)72萬(wàn)元,則甲工程隊(duì)最少工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)三位正整數(shù)M,其各位數(shù)字均不為零且互不相等.若將M的十位數(shù)字與百位數(shù)字交換位置,得到一個(gè)新的三位數(shù),我們稱這個(gè)三位數(shù)為M的“友誼數(shù)”,如:168的“友誼數(shù)”為“618”;若從M的百位數(shù)字、十位數(shù)字、個(gè)位數(shù)字中任選兩個(gè)組成一個(gè)新的兩位數(shù),并將得到的所有兩位數(shù)求和,我們稱這個(gè)和為M的“團(tuán)結(jié)數(shù)”,如:123的“團(tuán)結(jié)數(shù)”為12+13+21+23+31+32=132.
(1)求證:M與其“友誼數(shù)”的差能被15整除;
(2)若一個(gè)三位正整數(shù)N,其百位數(shù)字為2,十位數(shù)字為a、個(gè)位數(shù)字為b,且各位數(shù)字互不相等(a≠0,b≠0),若N的“團(tuán)結(jié)數(shù)”與N之差為24,求N的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案