【題目】已知二次函數(shù)y=-x2+bx+c(b,c為常數(shù))的圖象經(jīng)過點(diǎn)(2,3),(3,0).
(1)則b=,c=;
(2)該二次函數(shù)圖象與y軸的交點(diǎn)坐標(biāo)為,頂點(diǎn)坐標(biāo)為;
(3)在所給坐標(biāo)系中畫出該二次函數(shù)的圖象;
(4)根據(jù)圖象,當(dāng)-3<x<2時(shí),y的取值范圍是.
【答案】(1)b=2,c=3;(2)(0,3),(1,4)(3)見解析;(4)-12<y≤4
【解析】
(1)將點(diǎn)(2,3),(3,0)的坐標(biāo)直接代入y=-x2+bx+c即可;
(2)由(1)可得解析式,將二次函數(shù)的解析式華為頂點(diǎn)式即可;
(3)根據(jù)二次函數(shù)的定點(diǎn)、對(duì)稱軸及所過的點(diǎn)畫出圖象即可;
(4)直接由圖象可得出y的取值范圍.
(1)解:把點(diǎn)(2,3),(3,0)的坐標(biāo)直接代入y=-x2+bx+c得
,解得 ,
故答案為:b=2,c=3;
(2)解:令x=0,c=3, 二次函數(shù)圖像與y軸的交點(diǎn)坐標(biāo)為則(0,3),
二次函數(shù)解析式為y=y=-x2+2x+3=-(x-1)+4,則頂點(diǎn)坐標(biāo)為(1,4).
(3)解:如圖所示
…
(4)解:根據(jù)圖像,當(dāng)-3<x<2時(shí),y的取值范圍是:-12<y≤4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是銳角的外接圓,是的切線,切點(diǎn)為,,連結(jié)交于,的平分線交于,連結(jié).下列結(jié)論:①平分;②連接,點(diǎn)為的外心;③;④若點(diǎn),分別是和上的動(dòng)點(diǎn),則的最小值是.其中一定正確的是__________(把你認(rèn)為正確結(jié)論的序號(hào)都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù)的圖象經(jīng)過點(diǎn)A、P,點(diǎn)A(6,),點(diǎn)P的橫坐標(biāo)是2.拋物線y=ax2+bx+c(a≠0)經(jīng)過坐標(biāo)原點(diǎn),且與x軸交于點(diǎn)B,頂點(diǎn)為P.
求:(1)反比例函數(shù)的解析式;
(2)拋物線的表達(dá)式及B點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】施工隊(duì)要修建一個(gè)橫斷面為拋物線的公路隧道,其高度為6米,寬度OM為12米.現(xiàn)以O點(diǎn)為原點(diǎn),OM所在直線為x軸建立直角坐標(biāo)系(如圖1所示).
(1)求出這條拋物線的函數(shù)解析式,并寫出自變量x的取值范圍;
(2)隧道下的公路是雙向行車道(正中間是一條寬1米的隔離帶),其中的一條行車道能否行駛寬2.5米、高5米的特種車輛?請(qǐng)通過計(jì)算說明;
(3)施工隊(duì)計(jì)劃在隧道門口搭建一個(gè)矩形“腳手架”CDAB,使A、D點(diǎn)在拋物線上。B、C點(diǎn)在地面OM線上(如圖2所示).為了籌備材料,需測(cè)算“腳手架”三根鋼桿AB、AD、DC的長(zhǎng)度之和的最大值是多少,請(qǐng)你幫施工隊(duì)計(jì)算一下.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+3與坐標(biāo)軸分別交于點(diǎn)A,B(﹣3,0),C(1,0),點(diǎn)P是線段AB上方拋物線上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線解析式;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積最大?
(3)過點(diǎn)P作x軸的垂線,交線段AB于點(diǎn)D,再過點(diǎn)P作PE∥x軸交拋物線于點(diǎn)E,連接DE,請(qǐng)問是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AC為⊙O的直徑,D為的中點(diǎn),過點(diǎn)D作DE∥AC,交BC的延長(zhǎng)線于點(diǎn)E.
(1)判斷DE與⊙O的位置關(guān)系,并說明理由;
(2)若CE=,AB=6,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】清代《修武縣志》有勝果寺的記載,“康熙五十二年三月十七日,塔頂現(xiàn)青白二氣如云,越二日乃止”,此文中的塔即為“勝果寺塔”,是修武作為“千年古縣”的標(biāo)志性古建筑.為了測(cè)量塔的高度,某校數(shù)學(xué)興趣小組的兩名同學(xué)采用了如下方式進(jìn)行測(cè)量.如圖,小明站在處,眼睛距離地面的高度為,測(cè)得塔頂的仰角為,小紅站在距離小明的處,眼睛距離地面的高度為,測(cè)得塔頂的仰角為,已知,,塔底在同一水平面上,由此即可求出塔高.你知道是怎么求的嗎?請(qǐng)寫出解題過程.(結(jié)果精確到.參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在中,是直徑,為上一點(diǎn),,垂足為,連接.
(1)如圖1,求證:;
(2)如圖2,為延長(zhǎng)線上一點(diǎn),且,求證:;
(3)如圖3,在(2)的條件下,連接并延長(zhǎng),交于,若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】5G網(wǎng)絡(luò)是第五代移動(dòng)通信網(wǎng)絡(luò),它將推動(dòng)我國(guó)數(shù)字經(jīng)濟(jì)發(fā)展邁上新臺(tái)階. 據(jù)預(yù)測(cè),2020年到2030年中國(guó)5G直接經(jīng)濟(jì)產(chǎn)出和間接經(jīng)濟(jì)產(chǎn)出的情況如下圖所示.
根據(jù)上圖提供的信息,下列推斷不合理的是( )
A.2030年5G間接經(jīng)濟(jì)產(chǎn)出比5G直接經(jīng)濟(jì)產(chǎn)出多4.2萬億元
B.2020年到2030年,5G直接經(jīng)濟(jì)產(chǎn)出和5G間接經(jīng)濟(jì)產(chǎn)出都是逐年增長(zhǎng)
C.2030年5G直接經(jīng)濟(jì)產(chǎn)出約為2020年5G直接經(jīng)濟(jì)產(chǎn)出的13倍
D.2022年到2023年與2023年到2024年5G間接經(jīng)濟(jì)產(chǎn)出的增長(zhǎng)率相同
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com