【題目】某校組織學生書法比賽,對參賽作品按A、B、C、D四個等級進行了評定.現(xiàn)隨機取部分學生書法作品的評定結果進行分析,并繪制扇形統(tǒng)計圖和條形統(tǒng)計圖如下:

根據(jù)上述信息完成下列問題:

(1)求這次抽取的樣本的容量;

(2)請在圖②中把條形統(tǒng)計圖補充完整;

(3)已知該校這次活動共收到參賽作品750份,請你估計參賽作品達到B級以上(即A級和B級)有多少份?

【答案】(1120 2C級人數(shù)為:120×30%=36人,D級人數(shù)為:120-36-24-48=12人 (336° 4450

【解析】試題分析:(1)根據(jù)A級人數(shù)為24人,以及在扇形圖中所占比例為20%,24÷20%即可得出得出抽取的樣本的容量;

(2)根據(jù)C級在扇形圖中所占比例為30%,得出C級人數(shù)為:120×30%=36人,即可得出D級人數(shù),補全條形圖即可;

(3)根據(jù)A級和B級作品在樣本中所占比例為:(24+48)÷120×100%=60%,即可根據(jù)用樣本估計總體的方法得出該校這次活動共收到參賽作品750份,參賽作品達到B級以上的份數(shù)。

試題解析:

(1)A級人數(shù)為24人,在扇形圖中所占比例為20%,
∴這次抽取的樣本的容量為:24÷20%=120;
(2)根據(jù)C級在扇形圖中所占比例為30%,得出C級人數(shù)為:120×30%=36人,
D級人數(shù)為:120-36-24-48=12人,
∴補充條形統(tǒng)計圖如圖所示:

(3)A級和B級作品在樣本中所占比例為:(24+48)÷120×100%=60%,
∴該校這次活動共收到參賽作品750份,參賽作品達到B級以上有750×60%=450份。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點C落在點E處,BEAD交于點F

⑴求證:ΔABFΔEDF;

⑵若將折疊的圖形恢復原狀,點FBC邊上的點M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【閱讀理解】

, 為數(shù)軸上三點,若點的距離是點的距離的倍,我們就稱點的優(yōu)點.例如,如圖①,點表示的數(shù)為,點表示的數(shù)為.表示數(shù)的點到點的距離是,到點的距離是,那么點的優(yōu)點;又如,表示的點到點的距離是,到點的距離是,那么但點的好點.

【知識運用】

如圖②,為數(shù)軸上兩點,點所表示的數(shù)為,點所表示的數(shù)為

)數(shù)__________所表示的點是的優(yōu)點.

)如圖③,, 為數(shù)軸上兩點,點所表示的數(shù)為,點所表示的數(shù)為.現(xiàn)有一只電子螞蟻從點出發(fā),以個單位每秒的速度向左運動,到達點停止.當為何值時, 、中恰有一個點為其余兩點的好點?(請直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若a=﹣0.22 , b=﹣22 , c=(﹣ 2 , d=(﹣ 0 , 將a,b,c,d按從大到小的關系排列

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程()和不等式()

(1) ;(2) ;(3) ;(4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,要在某林場東西方向的兩地之間修一條公路MN,已知C點周圍200米范圍內(nèi)為原始森林保護區(qū),在MN上的點A處測得C在A的北偏東45°方向上,從A向東走600米到達B處,測得C在點B的北偏西60°方向上.

(1)MN是否穿過原始森林保護區(qū)?為什么?(參考數(shù)據(jù):

(2)若修路工程順利進行,要使修路工程比原計劃提前5天完成,需將原定的工作效率提高25%,則原計劃完成這項工程需要多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的平面直角坐標系中,作出函數(shù) 的圖象,并根據(jù)圖象回答下列問題:
(1)當x=﹣2時,求y的值;
(2)當2<y<4時,求x的取值范圍;
(3)當﹣1<x<2,且x≠0時,求y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】點(3,-4)到x軸的距離為 ( )

A. 3 B. 4 C. 5 D. -4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】補全解題過程.

如圖所示,C是線段AB的中點D在線段AB,AD=DBAC=3,求線段DC的長.

C是線段AB的中點,(已知

AB=2 AC .( 。

AC=3,(已知

AB=

D在線段AB,AD=DB,(已知

AD= AB,AD= DC= - AD =

查看答案和解析>>

同步練習冊答案