【題目】如圖,已知⊙O是△ABC的外接圓,AC是直徑,∠A=30°,BC=2,點D是AB的中點,連接DO并延長交⊙O于點P,過點P作PF⊥AC于點F.
(1)求劣弧PC的長;(結(jié)果保留π)
(2)求陰影部分的面積.(結(jié)果保留π).
【答案】(1)π;(2)π﹣.
【解析】
試題分析:(1)根據(jù)垂徑定理求得PD⊥AB,然后根據(jù)30°角的直角三角形的性質(zhì)求得OA=2OD,進而求得OF=OP,根據(jù)三角形中位線的性質(zhì)求得OD=BC,從而求得OA=2,然后根據(jù)弧長公式即可求得劣弧PC的長;
(2)求得OF和PF,然后根據(jù)S陰影=S扇形﹣S△OPF即可求得.
解:(1)∵點D是AB的中點,PD經(jīng)過圓心,
∴PD⊥AB,
∵∠A=30°,
∴∠POC=∠AOD=60°,OA=2OD,
∵PF⊥AC,
∴∠OPF=30°,
∴OF=OP,
∵OA=OC,AD=BD,
∴BC=2OD,
∴OA=BC=2,
∴⊙O的半徑為2,
∴劣弧PC的長===π;
(2)∵OF=OP,
∴OF=1,
∴PF==,
∴S陰影=S扇形﹣S△OPF=﹣×1×=π﹣.
科目:初中數(shù)學 來源: 題型:
【題目】一架梯子AB長25米,如圖斜靠在一面墻上,梯子底端B離墻7米.
(1)這個梯子的頂端距地面有多高?
(2)如果梯子的頂端下滑了4米,那么梯子底部在水平方向滑動了4米嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣2x﹣3.
(1)該二次函數(shù)圖象的對稱軸為 ;
(2)判斷該函數(shù)與x軸交點的個數(shù),并說明理由;
(3)下列說法正確的是 (填寫所有正確說法的序號)
①頂點坐標為(1,﹣4);
②當y>0時,﹣1<x<3;
③在同一平面直角坐標系內(nèi),該函數(shù)圖象與函數(shù)y=﹣x2+2x+3的圖象關于x軸對稱.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A的坐標為(2,2),若點P在坐標軸上,且△APO為等腰三角形,則滿足條件的點P個數(shù)是( )
A.4個 B.6個 C.7個 D.8個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于函數(shù)y=﹣2x+1,下列結(jié)論正確的是( )
A.它的圖象必經(jīng)過點(﹣1,2)
B.它的圖象經(jīng)過第一、二、三象限
C.當x>1時,y<0
D.y的值隨x值的增大而增大
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知BC是⊙O的直徑,AC切⊙O于點C,AB交⊙O于點D,E為AC的中點,連結(jié)DE.
(1)若AD=DB,OC=5,求切線AC的長;
(2)求證:ED是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題:①相等的兩個角是對頂角;②若∠1+∠2=180°,則∠1與∠2互為補角;③同旁內(nèi)角互補;④垂線段最短;⑤同角或等角的余角相等;⑥經(jīng)過直線外一點,有且只有一條直線與這條直線平行,其中假命題有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com