【題目】如圖,在ABC中,ADBC,垂足為點D,CE是邊AB上的中線,如果CD=BE,B=40°,那么∠BCE=_____度.

【答案】20.

【解析】

連接ED,再加上AD⊥BC,利用直角三角形斜邊上的中線等于斜邊的一半,很容易可以推出ECD為等腰三角形,根據(jù)等腰三角形的性質(zhì):等邊對等角,以及外角性質(zhì)即可求出∠BCE的度數(shù).

如圖,連接ED,

∵ADBC,

ABD是直角三角形,

CE是邊AB上的中線,

∴ED= AB=BE,

∴∠EDB=∠B=40°,

又∵CD=BE,

ED= CD,

∠DEC=∠DCE,

∵∠EDB是△DEC的外角,

∴∠EDB=∠DEC+∠DCE=2∠DCE=40°,

∴∠DCE=∠EDB=20°,

∵∠DCE即∠BCE,

BCE=20°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請僅用無刻度的直尺在下列圖1和圖2中按要求畫菱形.
(1)圖1是矩形ABCD,E,F(xiàn)分別是AB和AD的中點,以EF為邊畫一個菱形;
(2)圖2是正方形ABCD,E是對角線BD上任意一點(BE>DE),以AE為邊畫一個菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACB和ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點,

(1)求證:△ACE≌△BCD;

(2)若AE=3,AD=2,求DE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列說法不正確的是(
A.∠1和∠2是同旁內(nèi)角
B.∠1和∠3是對頂角
C.∠3和∠4是同位角
D.∠1和∠4是內(nèi)錯角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CDEF相交.

(1)圖中∠1和∠2分別在直線AB,CD_______,并且都在直線EF_____,具有這樣位置關(guān)系的一對角叫做______;

(2)圖中∠2和∠8都在直線AB,CD____,并且分別在直線EF___,具有這樣位置關(guān)系的一對角叫做_____;

(3)圖中∠2和∠7都在直線AB,CD____,且都在直線EF____,具有這樣位置關(guān)系的一對角叫做______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,點O是對角線AC的中點,點MBC上一點,連接AM,且AB=AM,點EBM中點,AFAB,連接EF,延長FOAB于點N.

(1)若BM=4,MC=3,AC=,求AM的長度;

(2)若∠ACB=45°,求證:AN+AF=EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A(﹣1,0),C(1,4),點B在x軸上,且AB=3.
(1)求點B的坐標(biāo);
(2)求△ABC的面積;
(3)在y軸上是否存在點P,使以A、B、P三點為頂點的三角形的面積為10?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中描出點 A(﹣2,0)、B(3,1)、C(2,3),將各點用線段依次 連接起來,并解答如下問題:

(1)在平面直角坐標(biāo)系中畫出 A′B′C′,使它與 ABC 關(guān)于 x 軸對稱,并直接寫出 A′B′C′三個頂點的坐標(biāo)

(2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上 A點表示的數(shù)是 a ,B 點表示的數(shù)是b ,且 ab滿足|a 8|b-220.動線段 CD=4(點 D 在點 C 的右側(cè)),從點 C與點 A重合的位置出發(fā),以每秒 2 個單位的速度向右運動,運動時間為 t秒.

(1)求a,b的值, 運動過程中,點 D 表示的數(shù)是多少,(用含有 t 的代數(shù)式表示)

(2)在 B、C、D 三個點中,其中一個點是另外兩個點為端點的線段的中點,求 t 的值;

(3)當(dāng)線段 CD 在線段 AB上(不含端點重合)時,如圖,圖中所有線段的和記作為 S, 則 S的值是否隨時間 t 的變化而變化?若變化,請說明理由;若不變,請求出 S值.

查看答案和解析>>

同步練習(xí)冊答案