【題目】如圖,在平面直角坐標系中,拋物線的圖象與x軸交于,B兩點,與y軸交于點,對稱軸與x軸交于點H.
(1)求拋物線的函數(shù)表達式
(2)直線與y軸交于點E,與拋物線交于點P,Q(點P在y軸左側(cè),點Q 在y軸右側(cè)),連接CP,CQ,若的面積為,求點P,Q的坐標.
(3)在(2)的條件下,連接AC交PQ于G,在對稱軸上是否存在一點K,連接GK,將線段GK繞點G逆時針旋轉(zhuǎn)90°,使點K恰好落在拋物線上,若存在,請直接寫出點K的坐標不存在,請說明理由.
【答案】(1);(2);(3)
【解析】
(1)利用對稱軸和A點坐標可得出,再設(shè),代入C點坐標,求出a的值,即可得到拋物線解析式;
(2)求C點和E點坐標可得出CE的長,再聯(lián)立直線與拋物線解析式,得到,設(shè)點P,Q的橫坐標分別為,利用根與系數(shù)的關(guān)系求出,再根據(jù)的面積可求出k的值,將k的值代入方程求出,即可得到P、Q的坐標;
(3)先求直線AC解析式,再聯(lián)立直線PQ與直線AC,求出交點G的坐標,設(shè),,過G作MN∥y軸,過K作KN⊥MN于N,過K'作K'M⊥MN于M,然后證明△MGK'≌△NKG,推出MK'=NG,MG=NK,建立方程求出的坐標,再代入拋物線解析式求出m的值,即可得到K的坐標.
解:(1)∵拋物線對稱軸,點
∴
設(shè)拋物線的解析式為
將點代入解析式得:,
解得,
∴拋物線的解析式為,即
(2)當x=0時,
∴C點坐標為(0,2),OC=2
直線與y軸交于點E,
當x=0時,
∴點,OE=1
∴
聯(lián)立和得:
整理得:
設(shè)點P,Q的橫坐標分別為
則是方程的兩個根,
∴
∴
∴的面積
解得(舍)
將k=3代入方程得:
解得:
∴
∴
(3)存在,
設(shè)AC直線解析式為,
代入A(4,0),C(0,2)得
,解得,
∴AC直線解析式為
聯(lián)立直線PQ與直線AC得
,解得
∴
設(shè),,
如圖,過G作MN∥y軸,過K作KN⊥MN于N,過K'作K'M⊥MN于M,
∵∠KGK'=90°,
∴∠MGK'+∠NGK=90°
又∵∠NKG+∠NGK=90°
∴∠MGK'=∠NKG
在△MGK'和△NKG中,
∵∠M=∠N=90°,∠MGK'=∠NKG,GK'=GK
∴△MGK'≌△NKG(AAS)
∴MK'=NG,MG=NK
∴,解得
即K'坐標為(,)
代入得:
解得:
∴K的坐標為或
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,B,C,E是同一直線上的三個點, 四邊形ABCD與四邊形CEFG都是正方形.連接BG,DE.
(1)探究BG與DE之間的數(shù)量關(guān)系, 并證明你的結(jié)論;
(2)當正方形CEFG繞點C在平面內(nèi)順時針轉(zhuǎn)動到如圖②所示的位置時,線段BG和ED有何關(guān)系? 寫出結(jié)論并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AD的中點,F是AB邊上一點,BF=3AF,則下列四個結(jié)論:
①△AEF∽△DCE;
②CE平分∠DCF;
③點B、C、E、F四個點在同一個圓上;
④直線EF是△DCE的外接圓的切線;
其中,正確的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把函數(shù)C1:y=ax2﹣2ax﹣3a(a≠0)的圖象繞點P(m,0)旋轉(zhuǎn)180°,得到新函數(shù)C2的圖象,我們稱C2是C1關(guān)于點P的相關(guān)函數(shù).C2的圖象的對稱軸與x軸交點坐標為(t,0).
(1)填空:t的值為 (用含m的代數(shù)式表示)
(2)若a=﹣1,當≤x≤t時,函數(shù)C1的最大值為y1,最小值為y2,且y1﹣y2=1,求C2的解析式;
(3)當m=0時,C2的圖象與x軸相交于A,B兩點(點A在點B的右側(cè)).與y軸相交于點D.把線段AD原點O逆時針旋轉(zhuǎn)90°,得到它的對應(yīng)線段A′D′,若線A′D′與C2的圖象有公共點,結(jié)合函數(shù)圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,內(nèi)接于,AD是直徑,的平分線交BD于H,交于點C,連接DC并延長,交AB的延長線于點E.
(1)求證:;
(2)若,求的值
(3)如圖2,連接CB并延長,交DA的延長線于點F,若,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個3×2的矩形(即長為3,寬為2)可以用兩種不同的方式分割成3或6個邊長是正整數(shù)的小正方形,即:小正方形的個數(shù)最多是6個,最少是3個.
(1)一個5×2的矩形用不同的方式分割后,小正方形的個數(shù)最多是 個,最少是 個;
(2)一個7×2的矩形用不同的方式分割后,小正方形的個數(shù)最多是 個,最少是 個;
(3)一個(2n+1)×2的矩形用不同的方式分割后,小正方形的個數(shù)最多是 個,最少是 個.(n是正整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,AB=4,點D為AB的中點,以點D為圓心作圓,半圓恰好經(jīng)過三角形的直角頂點C,以點D為頂點,作90°的∠EDF,與半圓交于點E,F(xiàn),則圖中陰影部分的面積是____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系內(nèi),已知點A(0,6)、點B(8,0),動點P從點A開始在線段AO上以每秒1個單位長度的速度向點O移動,同時動點Q從點B開始在線段BA上以每秒2個單位長度的速度向點A移動,設(shè)點P、Q移動的時間為t秒.
(1)求直線AB的解析式;
(2)當t為何值時,△APQ與△AOB相似?
(3)當t為何值時,△APQ的面積為個平方單位?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料,關(guān)于x的方程:x+=c+的解是x1=c,x2=;x﹣=c﹣的解是x1=c,x2=﹣;x+=c+的解是x1=c,x2=;x+=c+的解是x1=c,x2=;……
(1)請觀察上述方程與解的特征,比較關(guān)于x的方程x+=c+(a≠0)與它們的關(guān)系猜想它的解是什么,并利用“方程的解”的概念進行驗證.
(2)可以直接利用(1)的結(jié)論,解關(guān)于x的方程:x+=a+.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com