【題目】如圖1,在平面直角坐標(biāo)系中,直線(xiàn)AB與x軸交于點(diǎn)A(m,0),與y軸交于點(diǎn)B(0,n),且m,n滿(mǎn)足:(m+n)2+|n﹣6|=0.
(1)求:①m,n的值;②S△ABO的值;
(2)D為OA延長(zhǎng)線(xiàn)上一動(dòng)點(diǎn),以BD為直角邊作等腰直角△BDE,連接EA,求直線(xiàn)EA與y軸交點(diǎn)F的坐標(biāo).
(3)如圖2,點(diǎn)E為y軸正半軸上一點(diǎn),且∠OAE=30°,AF平分∠OAE,點(diǎn)M是射線(xiàn)AF上一動(dòng)點(diǎn),點(diǎn)N是線(xiàn)段OA上一動(dòng)點(diǎn),試求OM+MN的最小值(圖1與圖2中點(diǎn)A的坐標(biāo)相同).
【答案】(1)①m=﹣6,n=6,②18;(2)F(0,﹣6);(3)OM+MN的最小值為3.
【解析】
(1)①利用非負(fù)數(shù)的性質(zhì)即可解決問(wèn)題.
②先確定出OA=OB=6,從而求得△ABO的面積.
(2)先判斷出△DEM≌△BDO得出EM=DO,MD=OB=OA=6,進(jìn)而判斷出AM=EM,即可得出∠OAF=45°,即可得出點(diǎn)F坐標(biāo),最后用待定系數(shù)法得出直線(xiàn)EA解析式.
(3)過(guò)點(diǎn)O作OG⊥AE于G,交AF于M,作MN⊥OA于N,連接MN,此時(shí)OM+MN的值最。
(1)①∵(m+n)2+|n﹣6|=0,
又∵(m+n)2≥0,|n﹣6|≥0.
∴m+n=0,n=6,
∴m=﹣6,n=6.
②∵直線(xiàn)AB與x軸交于點(diǎn)A(﹣6,0),與y軸交于B(0,6).
∴OA=6,OB=6,
∴S△ABO=OAOB=×6×6=18;
(2)如圖1,過(guò)點(diǎn)E作EM⊥x軸于M,
∴∠MDE+∠DEM=90°,
∵△BDE是等腰直角三角形,
∴DE=DB,∠BDE=90°,
∴∠MDE+∠BDO=90°,
∴∠DEM=∠BDO,
在△DEM和△BDO中,
,
∴△DEM≌△BDO(AAS),
∴EM=DO,MD=OB=OA=6,
∴AM=DM+AD=6+AD,
EM=OD=OA+AD=6+AD,
∴EM=AM,
∴∠MAE=45°=∠OAF,
∴OA=OF,
∴F(0,﹣6).
(3)如圖2中,
過(guò)點(diǎn)O作OG⊥AE于G,交AF于M,作MN⊥OA于N,連接MN,此時(shí)OM+MN的值最。
∵∠MAG=∠MAN,MG⊥AG,MN⊥AN,
∴MG=MN,
∴OM+MN=OM+MG=OG,
在Rt△OAG中,∠OAE=30°,OA=6,
∴OG=3,
∴OM+MN的最小值為3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次研究性學(xué)習(xí)活動(dòng)中,同學(xué)們看到了工人師傅在木板上畫(huà)一個(gè)直角三角形的過(guò)程(如圖所示):畫(huà)線(xiàn)段AB,過(guò)點(diǎn)A任作一條直線(xiàn)l,以點(diǎn)A為圓心,以AB長(zhǎng)為半徑畫(huà)弧,與直線(xiàn)l相交于兩點(diǎn)C、D,連接BC和BD.則△BCD就是直角三角形.
(1)請(qǐng)你說(shuō)明△BCD是直角三角形的道理;
(2)請(qǐng)利用上述方法作一個(gè)直角三角形,使其中一個(gè)銳角為60°(不寫(xiě)作法,保留作圖
痕跡,在圖中注明60°的角).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE=10.求CE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2的圖象與一次函數(shù)y=mx+4的圖象相交于點(diǎn)A(-2,2)和B(n,8)兩點(diǎn).
(1)求二次函數(shù)y=ax2與一次函數(shù)y=mx+4的表達(dá)式;
(2)試判斷△AOB的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,A(-2,1),B(-3,4),C(-1,3),過(guò)點(diǎn)(l,0)作x軸的垂線(xiàn).
(1)作出△ABC關(guān)于直線(xiàn)的軸對(duì)稱(chēng)圖形△;
(2)直接寫(xiě)出A1(___,___),B1(___,___),C1(___,___);
(3)在△ABC內(nèi)有一點(diǎn)P(m,n),則點(diǎn)P關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)P1的坐標(biāo)為(___,___)(結(jié)果用含m,n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三條邊都相等的三角形叫做等邊三角形,它的三個(gè)角都是60°.△ABC是等邊三角形,點(diǎn)D在BC所在直線(xiàn)上運(yùn)動(dòng),連接AD,在AD所在直線(xiàn)的右側(cè)作∠DAE=60°,交△ABC的外角∠ACF的角平分線(xiàn)所在直線(xiàn)于點(diǎn)E.
(1)如圖1,當(dāng)點(diǎn)D在線(xiàn)段BC上時(shí),請(qǐng)你猜想AD與AE的大小關(guān)系,并給出證明;
(2)如圖2,當(dāng)點(diǎn)D在線(xiàn)段BC的反向延長(zhǎng)線(xiàn)上時(shí),依據(jù)題意補(bǔ)全圖形,請(qǐng)問(wèn)上述結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店購(gòu)買(mǎi)60件A商品和30件B商品共用了1080元,購(gòu)買(mǎi)50件A商品和20件B商品共用了880元.
(1)A、B兩種商品的單價(jià)分別是多少元?
(2)已知該商店購(gòu)買(mǎi)B商品的件數(shù)比購(gòu)買(mǎi)A商品的件數(shù)的2倍少4件,如果需要購(gòu)買(mǎi)A、B兩種商品的總件數(shù)不少于32件,且該商店購(gòu)買(mǎi)的A、B兩種商品的總費(fèi)用不超過(guò)296元,那么該商店有哪幾種購(gòu)買(mǎi)方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(11·湖州)(本小題10分)
如圖,已知E、F分別是□ABCD的邊BC、AD上的點(diǎn),且BE=DF。
⑴求證:四邊形AECF是平行四邊形;
⑵若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是16,腰AC的垂直平分線(xiàn)EF分別交AC,AB邊于E,F點(diǎn)若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線(xiàn)段EF上一動(dòng)點(diǎn),則周長(zhǎng)的最小值為
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com