【題目】如圖,在矩形ABCD中,AB=4,AD=10.直角尺的直角頂點(diǎn)PAD上滑動(dòng)時(shí)(點(diǎn)PA,D不重合),一直角邊經(jīng)過(guò)點(diǎn)C,另一直角邊AB交于點(diǎn)E

1)求證:

2)是否存在這樣的點(diǎn)P,使的周長(zhǎng)等于周長(zhǎng)的2倍?若存在,求出DP的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

【答案】1)見(jiàn)解析;(2)存在這樣的點(diǎn)P,使的周長(zhǎng)等于周長(zhǎng)的2倍;DP的長(zhǎng)為8.

【解析】

1)首先根據(jù)余角的等量轉(zhuǎn)化,得出∠CPD=AEP,∠APE=DCP,然后根據(jù)兩角對(duì)應(yīng)相等,兩個(gè)三角形相似,即可判定;

2)首先假設(shè)存在這樣的點(diǎn),然后根據(jù)相似的性質(zhì)得出CDAP=PDAE=2,即可得解.

1)∵∠CPD=90°-APE=AEP,

∴∠CPD=AEP,∠APE=∠DCP

(兩角對(duì)應(yīng)相等,兩個(gè)三角形相似)

2)假設(shè)存在這樣的點(diǎn)P,

RtAEPRtDPC

CDAP=PDAE=2

又∵CD=AB=4,

AP=2,PD=8,

∴存在這樣的P點(diǎn),且DP長(zhǎng)為8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(﹣3,0),對(duì)稱(chēng)軸為直線x=﹣1,給出四個(gè)結(jié)論:

b2>4ac 2a+b=0 c﹣a<0 若點(diǎn)B(﹣4,y1)、C(1,y2)為函數(shù)圖象上的兩點(diǎn),則y1<y2,其中正確結(jié)論是(

A.②④ B.②③ C.①③ D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為加快5G網(wǎng)絡(luò)建設(shè),某移動(dòng)通信公司在一個(gè)坡度為21的山腰上建了一座5G信號(hào)通信塔AB,在距山腳C處水平距離39米的點(diǎn)D處測(cè)得通信塔底B處的仰角是35°,測(cè)得通信塔頂A處的仰角是49°,(參考數(shù)據(jù):sin35°≈0.57,tan35°≈0.70,sin49°≈0.75,tan49°≈1.15),則通信塔AB的高度約為( )

A.27B.31C.48D.52

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O中的弦BC等于⊙O的半徑,延長(zhǎng)BCD,使BCCD,點(diǎn)A為優(yōu)弧BC上的一個(gè)動(dòng)點(diǎn),連接AD,AB,AC,過(guò)點(diǎn)DDEAB,交直線AB于點(diǎn)E,當(dāng)點(diǎn)A在優(yōu)弧BC上從點(diǎn)C運(yùn)動(dòng)到點(diǎn)B時(shí),則DE+AC的值的變化情況是( )

A.不變B.先變大再變小C.先變小再變大D.無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線yax2+bx+c過(guò)頂點(diǎn)A0,2),以原點(diǎn)O為圓心,OA為半徑的圓與拋物線的另兩個(gè)交點(diǎn)為B,C,且BC的左側(cè),△ABC有一個(gè)內(nèi)角為60°

1)求拋物線的解析式.

2)若MN與直線y=﹣2x平行,Mx1,y1),Nx2,y2),M,N都在拋物線上,且M,N位于直線BC的兩側(cè),y1y2,MEBCE,NFBCF,解決以下問(wèn)題:

①求證:.

②求△MBC外心的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC內(nèi)接于以AB為直徑的⊙O,過(guò)點(diǎn)C作⊙O的切線交BA的延長(zhǎng)線于點(diǎn)D,且DAAB=12.

(1)求∠CDB的度數(shù);

(2)在切線DC上截取CE=CD,連接EB,判斷直線EB與⊙O的位置關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校八年級(jí)學(xué)生在一次射擊訓(xùn)練中,隨機(jī)抽取10名學(xué)生的成績(jī)?nèi)缦卤,?qǐng)回答問(wèn)題:

環(huán)數(shù)

6

7

8

9

人數(shù)

1

5

2

1)填空:10名學(xué)生的射擊成績(jī)的眾數(shù)是   ,中位數(shù)是   

2)求這10名學(xué)生的平均成績(jī).

3)若9環(huán)(含9環(huán))以上評(píng)為優(yōu)秀射手,試估計(jì)全年級(jí)500名學(xué)生中有多少是優(yōu)秀射手?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論正確的個(gè)數(shù)是( 。

(1)一個(gè)多邊形的內(nèi)角和是外角和的3倍,則這個(gè)多邊形是六邊形;

(2)如果一個(gè)三角形的三邊長(zhǎng)分別為6、8、10,則最長(zhǎng)邊上的中線長(zhǎng)為5;

(3)若ABC∽△DEF,相似比為1:4,則SABC:SDEF=1:4;

(4)若等腰三角形一個(gè)角為80°,則底角為80°50°.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分9分)

根據(jù)要求,解答下列問(wèn)題.

(1)根據(jù)要求,解答下列問(wèn)題.

方程x2-2x+1=0的解為_(kāi)_______________________;

方程x23x+2=0的解為_(kāi)_______________________;

方程x24x+3=0的解為_(kāi)_______________________;

…… ……

(2)根據(jù)以上方程特征及其解的特征,請(qǐng)猜想:

方程x29x+8=0的解為_(kāi)_______________________;

關(guān)于x的方程________________________的解為x1=1,x2=n.

(3)請(qǐng)用配方法解方程x29x+8=0,以驗(yàn)證猜想結(jié)論的正確性.

查看答案和解析>>

同步練習(xí)冊(cè)答案