【題目】如圖,正方形網(wǎng)格中的每個小正方形邊長都是1

1)如圖1,在4×4的方格中,畫一個三角形,使它的三邊長分別是3,,,且頂點(diǎn)都在格點(diǎn)上;

2)如圖2 , 直接寫出:①△ABC的周長為 ②△ABC的面積為 ;AB邊上的高為

【答案】(1)詳見解析;(2);

【解析】

1)根據(jù)題意作出圖形即可;

2)根據(jù)勾股定理求得ABC的各邊長,然后根據(jù)面積和周長公式即可得到結(jié)論.

解:(1)如圖所示,ABC即為所求;

AB=3,AC=BC=.

2)如圖2,∵AC=AB==,BC==

∴①△ABC的周長為+2;

②△ABC的面積=2×2-×1×2-×1×2-×1×1=

③過CCDABD,

AB邊上的高CD=2×÷=

故答案為:(2);②;③.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以AB邊為直徑的O經(jīng)過點(diǎn)P,C是O上一點(diǎn),連結(jié)PC交AB于點(diǎn)E,且ACP=60°,PA=PD.

(1)試判斷PD與O的位置關(guān)系,并說明理由;

(2)若點(diǎn)C是弧AB的中點(diǎn),已知AB=4,求CECP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形中,,,現(xiàn)將矩形折疊使點(diǎn)與點(diǎn)重合,則折痕的長是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把命題如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么的逆命題改寫成如果……,那么……”的形式:_____________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家商場以同樣的價格出售同樣的電器,但各自推出的優(yōu)惠方案不同,甲商場規(guī)定:凡超過元的電器,超出的金額按收;乙商場規(guī)定:凡超過元的電器,超出的金額按收取,某顧客購買的電器價格是.

1)當(dāng)時,分別用代數(shù)式表示在兩家商場購買電器所需付的費(fèi)用

2)當(dāng)時,該顧客應(yīng)選擇哪一家商場購買比較合算?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校羽毛球隊需要購買6支羽毛球拍和盒羽毛球(),羽 毛球拍市場價為150/支,羽毛球為30/盒.甲商場優(yōu)惠方案為:所有商品 九折.乙商場優(yōu)惠方案為:買1支羽毛球拍送1盒羽毛球,其余原價銷售.

(1)分別用的代數(shù)式表示在甲商場和乙商場購買所有物品的費(fèi)用.

(2)當(dāng)時,請通過計算說明選擇哪個商場購買比較省錢.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正比例函數(shù)y=kx經(jīng)過點(diǎn)A,點(diǎn)A在第四象限,過點(diǎn)AAH⊥x軸,垂足為點(diǎn)H,點(diǎn)A的橫坐標(biāo)為3,且△AOH的面積為3.

(1)求正比例函數(shù)的解析式;

(2)在x軸上能否找到一點(diǎn)P,使△AOP的面積為5?若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是一高為4米的平臺,AB是與CD底部相平的一棵樹,在平臺頂C點(diǎn)測得樹頂A點(diǎn)的仰角α=30°,從平臺底部向樹的方向水平前進(jìn)3米到達(dá)點(diǎn)E,在點(diǎn)E處測得樹頂A點(diǎn)的仰角β=60°,求樹高AB(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題有兩道題,請從(1)、(2)題中選一題作答即可)

1)某品牌太陽鏡由一個鏡架和兩個鏡片配套構(gòu)成,每個工人每天可以加工個鏡架或者加工個鏡片,現(xiàn)有名工人,應(yīng)怎么安排人力,才能使每天生產(chǎn)的鏡架和鏡片配套?能做成多少副太陽鏡?

2)去年春季,蔬菜種植場在公頃的大棚地里分別種植了茄子和西紅柿,總費(fèi)用是萬元.其中,種植茄子和西紅柿每公頃的費(fèi)用和每公頃獲利情況如表:

每公頃費(fèi)用 萬元

每公頃獲利 萬元

茄子

西紅柿

請解答下列問題:

①求出茄子和西紅柿的種植面積各為多少公頃?

②種植場在這一季共獲利多少萬元?

查看答案和解析>>

同步練習(xí)冊答案