【題目】2019年九龍口詩詞大會在九龍口鎮(zhèn)召開,我校九年級選拔了3名男生和2名女生參加某分會場的志愿者工作.本次學(xué)生志愿者工作一共設(shè)置了三個崗位,分別是引導(dǎo)員、聯(lián)絡(luò)員和咨詢員.
(1)若要從這5名志愿者中隨機選取一位作為引導(dǎo)員,求選到女生的概率;
(2)若甲、乙兩位志愿者都從三個崗位中隨機選擇一個,請你用畫樹狀圖或列表法求出他們恰好選擇同一個崗位的概率.(畫樹狀圖和列表時可用字母代替崗位名稱)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD的四個角向內(nèi)折起,恰好拼成一個無縫隙無重疊的四邊形EFGH,EH=12厘米,EF=16厘米,則邊AD的長是( 。
A. 12厘米 B. 16厘米 C. 20厘米 D. 28厘米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=45°,AB=4cm,將△ABC繞點B按逆時針方向旋轉(zhuǎn)45°后得到△A′BC′,則陰影部分的面積為 ___________cm2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)探究發(fā)現(xiàn):下面是一道例題及解答過程,請補充完整:
如圖①在等邊△ABC內(nèi)部,有一點P,若∠APB=150°,求證:AP2+BP2=CP2
證明:將△APC繞A點逆時針旋轉(zhuǎn)60°,得到△AP’B,連接PP’,則△APP’為等邊三角形
∴∠APP’=60° ,PA=PP’ ,PC=
∵∠APB=150°,∴∠BPP’=90°
∴P’P2+BP2= ,即PA2+PB2=PC2
(2)類比延伸:如圖②在等腰△ABC中,∠BAC=90°,內(nèi)部有一點P,若∠APB=135°,試判斷線段PA,PB,PC之間的數(shù)量關(guān)系,并證明.
(3)聯(lián)想拓展:如圖③在△ABC中,∠BAC=120°,AB=AC,點P在直線AB上方,且∠APB=60°,滿足(kPA)2+PB2=PC2(其中k>0),請直接寫出k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)y=ax2-2ax+c的圖象經(jīng)過點A(0,-1),B(-2,y1),C(3,y2),D(,y3),且與x軸沒有交點,則y1,y2,y3,的大小關(guān)系是( )
A.y1>y2>y3B.y1> y3> y2C.y2> y1>y3D.y3>y2> y1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a<0)與x軸交于點A(-2,0)和點B,與y軸交于C,對稱軸為直線x= .
(1)求a、b滿足的關(guān)系式;
(2)若點D為拋物線的頂點,連接CD,DB,BC,S△BCD= .
①求拋物線的解析式;
②點M是第一象限內(nèi)對稱軸右側(cè)拋物線上一點,過點M作MN⊥x軸,垂足為點N,線段MN上有一點H,若∠HBA+∠MAB=90°,求證:HN的長為定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,AC=8,BC=6,將△ABC繞點C順時針旋轉(zhuǎn)得到△MCN,點D、E分別為AB、MN的中點,若點E剛好落在邊BC上,則sin∠DEC=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,菱形 ABCD 的邊 AD∥x 軸,直線y=2x+b 與 x 軸交于點 B,與反比例函數(shù) y=(k>0)圖象交于點 D 和點 E,OB=3,OA=4.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)點 P 為線段 BE 上的一個動點,過點 P 作 x 軸的平行線,當△CDE 被這條平行線分成面積相等的兩部分時,求點 P 的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com