【題目】如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側)兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).
(1)求點B,C的坐標;
(2)判斷△CDB的形狀并說明理由;
(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關系式,并寫出自變量t的取值范圍.
【答案】
(1)解:∵點A(﹣1,0)在拋物線y=﹣(x﹣1)2+c上,
∴0=﹣(﹣1﹣1)2+c,得c=4,
∴拋物線解析式為:y=﹣(x﹣1)2+4,
令x=0,得y=3,∴C(0,3);
令y=0,得x=﹣1或x=3,∴B(3,0).
(2)解:△CDB為直角三角形.理由如下:
由拋物線解析式,得頂點D的坐標為(1,4).
如答圖1所示,過點D作DM⊥x軸于點M,
則OM=1,DM=4,BM=OB﹣OM=2.
過點C作CN⊥DM于點N,則CN=1,DN=DM﹣MN=DM﹣OC=1.
在Rt△OBC中,由勾股定理得:BC= =
=
;
在Rt△CND中,由勾股定理得:CD= =
=
;
在Rt△BMD中,由勾股定理得:BD= =
=
.
∵BC2+CD2=BD2,
∴△CDB為直角三角形(勾股定理的逆定理).
(3)解:設直線BC的解析式為y=kx+b,∵B(3,0),C(0,3),
∴ ,
解得k=﹣1,b=3,
∴y=﹣x+3,
直線QE是直線BC向右平移t個單位得到,
∴直線QE的解析式為:y=﹣(x﹣t)+3=﹣x+3+t;
設直線BD的解析式為y=mx+n,∵B(3,0),D(1,4),
∴ ,
解得:m=﹣2,n=6,
∴y=﹣2x+6.
連接CQ并延長,射線CQ交BD于點G,則G( ,3).
在△COB向右平移的過程中:
(I)當0<t≤ 時,如答圖2所示:
設PQ與BC交于點K,可得QK=CQ=t,PB=PK=3﹣t.
設QE與BD的交點為F,則: ,解得
,∴F(3﹣t,2t).
S=S△QPE﹣S△PBK﹣S△FBE= PEPQ﹣
PBPK﹣
BEyF=
×3×3﹣
(3﹣t)2span>﹣
t2t=
t2+3t;
(II)當 <t<3時,如答圖3所示:
設PQ分別與BC、BD交于點K、點J.
∵CQ=t,
∴KQ=t,PK=PB=3﹣t.
直線BD解析式為y=﹣2x+6,令x=t,得y=6﹣2t,
∴J(t,6﹣2t).
S=S△PBJ﹣S△PBK= PBPJ﹣
PBPK=
(3﹣t)(6﹣2t)﹣
(3﹣t)2=
t2﹣3t+
.
綜上所述,S與t的函數(shù)關系式為:
S= .
【解析】(1)首先將點A的坐標代入拋物線的解析式,從而可求得c的值,然后依據(jù)坐標軸上點的坐標特點以及結合拋物線的解析式可得到點B、C的坐標;
(2)依據(jù)兩點間的距離公式可求得△CDB三邊的長度,然后利用勾股定理的逆定理判定△CDB為直角三角形;
(3)△COB沿x軸向右平移過程中,分兩個階段:當0<t≤;當
<t<3時,然后依據(jù)題意畫出圖形,接下來,用含t的式子表示重合部分的面積即可.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法錯誤的是( )
A. 任意拋擲一個啤酒瓶蓋,落地后印有商標一面向上的可能性大小是
B. 一個轉盤被分成8塊全等的扇形區(qū)域,其中2塊是紅色,6塊是藍色. 用力轉動轉盤,當轉盤停止后,指針對準紅色區(qū)域的可能性大小是
C. 一個不透明的盒子中裝有2個白球,3個紅球,這些球除顏色外都相同. 從這個盒子中隨意摸出一個球,摸到白球的可能性大小是
D. 100件同種產(chǎn)品中,有3件次品. 質檢員從中隨機取出一件進行檢測,他取出次品的可能性大小是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在圖1至圖3中,點B是線段AC的中點,點D是線段CE的中點.四邊形BCGF和四邊形CDHN都是正方形.AE的中點是M.
(1)如圖1,點E在AC的延長線上,點N與點G重合時,點M與點C重合,求證:FM=MH,F(xiàn)M⊥MH;
(2)將圖1中的CE繞點C順時針旋轉一個銳角,得到圖2,求證:△FMH是等腰直角三角形;
(3)將圖2中的CE縮短到圖3的情況,△FMH還是等腰直角三角形嗎?(不必說明理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知同一平面內(nèi),
.
(1)問題發(fā)現(xiàn):的余角是_____,
的度數(shù)是_____;
(2)拓展探究:若平分
,
平分
,則
的度數(shù)是_____.
(3)類比延伸:在(2)的條件下,如果將題目中的改為
;
改為
,其他條件不變,你能求出
嗎?若能,請你寫出求解過程;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示是某班學生體重的頻數(shù)分布直方圖,則該班學生體重在40~45千克這一組的有________人,體重不足40千克的有________人.(注:40~45千克包括40千克,不包括45千克,其他同)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=48°,∠ABC與∠ACD的平分線交于點A1,得∠A1;∠A1BC與∠A1CD的平分線相交于點A2,得∠A2;……;∠An-1BC與∠An-1CD的平分線交于點An,要使∠An的度數(shù)為整數(shù),則n的最大值為( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,現(xiàn)有一個均勻的轉盤被平均分成六等份,分別標有這六個數(shù)字,轉動轉盤,當轉盤停止時,指針指向的數(shù)字即為轉出的數(shù)字(當指針恰好指在分界線上時,不記,重轉).
(1)轉動轉盤,轉出的數(shù)字大于的概率是多少;
(2)現(xiàn)有兩張分別寫有和
的卡片,要隨機轉動轉盤,轉盤停止后記下轉出的數(shù)字,與兩張卡片上的數(shù)字分別作為三條線段的長度.
①這三條線段能構成三角形的概率是多少?
②這三條線段能構成等腰三角形的概率是多少?(注:要求寫出各種可能情況)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)軸上,點M、N分別表示數(shù)m,n. 則點M,N 之間的距離為|m-n|.已知點A,B,C,D在數(shù)軸上分別表示的數(shù)為a,b,c,d.且|a-c|=|b-c|=|d-a|=1 (a≠b),則線段BD的長度為( )
A.3.5B.0.5C.3.5或0.5D.4.5或0.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com