【題目】周未,小麗騎自行車從家出發(fā)到野外郊游,從家出發(fā)0.5小時到達甲地,游玩一段時間后按原速前往乙地,小麗離家1小時20分鐘后,媽媽駕車沿相同路線前往乙地,行駛10分鐘時,恰好經過甲地,如圖是她們距乙地的路程ykm)與小麗離家時間xh)的函數(shù)圖象.

1)小麗騎車的速度為   km/h,H點坐標為   

2)求小麗游玩一段時間后前往乙地的過程中yx的函數(shù)關系;

3)小麗從家出發(fā)多少小時后被媽媽追上?此時距家的路程多遠.

【答案】(1)20,(,20);(2y2=﹣20x+40;(31.75小時,25km

【解析】

1)根據(jù)函數(shù)圖中的數(shù)據(jù),由小麗從家到甲地的路程和時間可以求出小麗騎車的速度;(2)先求出直線AB的解析式,再根據(jù)直線ABCD,求出直線CD的解析式;

3)求出直線EF的解析式,聯(lián)立直線CD和直線EF的解析式,求出交點D的坐標即可.

解:(1)由函數(shù)圖可以得出,小麗家距離甲地的路程為10km,花費時間為0.5h

故小麗騎車的速度為:10÷0.520km/h),

由題意可得出,點H的縱坐標為20,橫坐標為:=

故點H的坐標為(,20);

故答案為:20;(,20);

2)設直線AB的解析式為:y1k1x+b1,

將點A0,30),B0.5,20)代入得:y1=﹣20x+30

ABCD,

∴設直線CD的解析式為:y2=﹣20x+b2,

將點C1,20)代入得:b240

y2=﹣20x+40;

3)設直線EF的解析式為:y3k3x+b3,

將點E30),H (,20)代入得:k3=﹣60,b3110,

y3=﹣60x+110

解方程組 ,解得,

∴點D坐標為(1.75,5),

30525km),

所以小麗出發(fā)1.75小時后被媽媽追上,此時距家25km

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】探究:如圖,分別以△ABC的兩邊AB和AC為邊向外作正方形ABMN和正方形ACDE,CN、BE交于點P. 求證:∠ANC = ∠ABE.

應用:Q是線段BC的中點,連結PQ. 若BC = 6,則PQ = ___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,它的周長為.若,三邊分別切于,,點,則的長為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ECD的中點,連接AE、BE,延長AEBC的延長線于點F

1)求證:DAE≌△CFE;

2)若ABBC+AD,求證:BEAF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一塊長方體木塊的各棱長如圖所示,一只蜘蛛在木塊的一個頂點A處,一只蒼蠅在這個長方體上和蜘蛛相對的頂點B處,蜘蛛急于捉住蒼蠅,沿著長方體的表面向上爬.

(1)如果D是棱的中點,蜘蛛沿ADDB路線爬行,它從A點爬到B點所走的路程為多少?

(2)若蜘蛛還走前面和右面這兩個面,你認為AD-DB"是最短路線嗎?如果不是,請求出最短路程,如果是,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,學習完代人消元法加減消元法解二元一次方程組后,善于思考的小銘在解方程組時,采用了一種整體代換的解法:

解:將方程②變形:4x+10y+y=52(2x+5y)+y=5

把方程①代入③得:2×3+y=5,∴y=-1①得x=4,所以,方程組的解為

請你解決以下問題:

(1)模仿小銘的整體代換法解方程組

(2)已知xy滿足方程組,求x2+4y2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=kx+bx軸、y軸分別交于點A,B,且OA,OB的長(OAOB)是方程x2-10x+24=0的兩個根,Pm,n)是第一象限內直線y=kx+b上的一個動點(點P不與點A,B重合).

(1)求直線AB的解析式.

(2)Cx軸上一點,且OC=2,求△ACP的面積Sm之間的函數(shù)關系式;

(3)x軸上是否有在點Q,使以A,BQ為頂點的三角形是等腰三角形?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖1和圖2,半圓O的直徑AB=2,點P不與點A,B重合為半圓上一點,將圖形延BP折疊,分別得到點A,O的對稱點A′,O′,設ABP=α

1當α=15°時,過點A′作A′CAB,如圖1,判斷A′C與半圓O的位置關系,并說明理由

2如圖2,當α= °時,BA′與半圓O相切當α= °時,點O′落在

3當線段BO′與半圓O只有一個公共點B時,求α的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知射線的角平分線,,點是射線上的點,連接.

(1)如圖1,當點在射線上時,連接.,則的形狀是_____.

(2)如圖2,當點在射線的反向延長線上時,連接,.,則(1)中的結論是否成立?請說明理由.

查看答案和解析>>

同步練習冊答案