【題目】已知△ABC中,AC=BC,∠C=120°,點(diǎn)D為AB邊的中點(diǎn),∠EDF=60°,DE、DF分別交AC、BC于E、F點(diǎn).
(1)如圖1,若EF∥AB.求證:DE=DF.
(2)如圖2,若EF與AB不平行. 則問(wèn)題(1)的結(jié)論是否成立?說(shuō)明理由.

【答案】
(1)解:∵EF∥AB.

∴∠FEC=∠A=30°.

∠EFC=∠B=30°

∴EC=CF.

又∵AC=BC

∴AE=BF

D是AB中點(diǎn).

∴DB=AD

∴△ADE≌△BDF.

∴DE=DF


(2)解:過(guò)D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.

∵AC=BC,

∴∠A=∠B,

又∵∠ACB=120°,

∴∠A=∠B=(180°﹣∠ACB)÷2=30°,

∴∠ADM=∠BDN=60°,

∴∠MDN=180°﹣∠ADM﹣∠BDN=60°.

∵AC=BC、AD=BD,

∴∠ACD=∠BCD,

∴DM=DN.

由∠MDN=60°、∠EDF=60°,可知:

一當(dāng)M與E重合時(shí),N就一定與F重合.此時(shí):

DM=DE、DN=DF,結(jié)合證得的DM=DN,得:DE=DF.

二當(dāng)M落在C、E之間時(shí),N就一定落在B、F之間.此時(shí):

∠EDM=∠EDF﹣∠MDF=60°﹣∠MDF,

∠FDN=∠MDN﹣∠MDF=60°﹣∠MDF,

∴∠EDM=∠FDN,

又∵∠DME=∠DNF=90°、DM=DN,

∴△DEM≌△DFN(ASA),

∴DE=DF.

三當(dāng)M落在A、E之間時(shí),N就一定落在C、F之間.此時(shí):

∠EDM=∠MDN﹣∠EDN=60°﹣∠EDN,

∠FDN=∠EDF﹣∠EDN=60°﹣∠EDN,

∴∠EDM=∠FDN,

又∵∠DME=∠DNF=90°、DM=DN,

∴△DEM≌△DFN(ASA),

∴DE=DF.

綜上一、二、三所述,得:DE=DF.


【解析】(1)根據(jù)SAS證明△ADE≌△BDF,再根據(jù)全等三角形的性質(zhì)可得DE=DF; (2)過(guò)D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.可證明DM=DN.再分一、當(dāng)M與E重合時(shí),N就一定與F重合.二、當(dāng)M落在C、E之間時(shí),N就一定落在B、F之間.三、當(dāng)M落在A、E之間時(shí),N就一定落在C、F之間.三種情況討論即可求解.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等腰三角形的性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=2x﹣1,當(dāng)自變量x增加a時(shí),則函數(shù)值y增加_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC, ①如圖1,若P點(diǎn)是∠ABC和∠ACB的角平分線的交點(diǎn),則∠P=90°+ ∠A;
②如圖2,若P點(diǎn)是∠ABC和外角∠ACE的角平分線的交點(diǎn),則∠P=90°﹣∠A;
③如圖3,若P點(diǎn)是外角∠CBF和∠BCE的角平分線的交點(diǎn),則∠P=90°﹣ ∠A.
上述說(shuō)法正確的個(gè)數(shù)是(

A.3個(gè)
B.2個(gè)
C.1個(gè)
D.0個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,我們把點(diǎn)P(x,y)的橫坐標(biāo)與縱坐標(biāo)的絕對(duì)值之和叫做點(diǎn)P(x,y)的勾股值,記為:「P」,即「P」=|x|+|y|.
(1)求點(diǎn)A(﹣1,3)的勾股值「A」;
(2)若點(diǎn)B在第一象限且滿足「B」=3,求滿足條件的所有B點(diǎn)與坐標(biāo)軸圍成的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】a,b,c是三角形的三邊,則代數(shù)式(a-b)2-c2的值是( 。

A. 正數(shù) B. 負(fù)數(shù) C. 等于零 D. 不能確

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】五月初,我市多地遭遇了持續(xù)強(qiáng)降雨的惡劣天氣,造成部分地區(qū)出現(xiàn)嚴(yán)重洪澇災(zāi)害,某愛心組織緊急籌集了部分資金,計(jì)劃購(gòu)買甲、乙兩種救災(zāi)物品共2000件送往災(zāi)區(qū),已知每件甲種物品的價(jià)格比每件乙種物品的價(jià)格貴10元,用350元購(gòu)買甲種物品的件數(shù)恰好與用300元購(gòu)買乙種物品的件數(shù)相同

1)求甲、乙兩種救災(zāi)物品每件的價(jià)格各是多少元?

2)經(jīng)調(diào)查,災(zāi)區(qū)對(duì)乙種物品件數(shù)的需求量是甲種物品件數(shù)的3倍,若該愛心組織按照此需求的比例購(gòu)買這2000件物品,需籌集資金多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】201656日,中國(guó)第一條具有自主知識(shí)產(chǎn)權(quán)的長(zhǎng)沙磁浮線正式開通運(yùn)營(yíng),該路線連接了長(zhǎng)沙火車南站和黃花國(guó)際機(jī)場(chǎng)兩大交通樞紐,沿線生態(tài)綠化帶走廊的建設(shè)尚在進(jìn)行中,屆時(shí)將給乘客帶來(lái)美的享受.星城渣土運(yùn)輸公司承包了某標(biāo)段的土方運(yùn)輸任務(wù),擬派出大、小兩種型號(hào)的渣土運(yùn)輸車運(yùn)輸土方,已知2輛大型渣土運(yùn)輸車與3輛小型渣土運(yùn)輸車一次共運(yùn)輸土方31噸,5輛大型渣土運(yùn)輸車與6輛小型渣土運(yùn)輸車一次共運(yùn)輸土方70噸.

1)一輛大型渣土運(yùn)輸車和一輛小型渣土運(yùn)輸車一次各運(yùn)輸土方多少噸?

2)該渣土運(yùn)輸公司決定派出大、小兩種型號(hào)的渣土運(yùn)輸車共20輛參與運(yùn)輸土方,若每次運(yùn)輸土方總量不少于148噸,且小型渣土運(yùn)輸車至少派出2輛,則有哪幾種派車方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠B,∠C的平分線交于點(diǎn)O,若∠BOC=132°,則∠A=度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】向陽(yáng)村2016年的人均收入為12000元,2018年的人均收入為14520元,則人均收入的年平均增長(zhǎng)為()

A.10%或-210%B.12.1%C.11%D.10%

查看答案和解析>>

同步練習(xí)冊(cè)答案