【題目】如圖所示,已知ABC,分別以AB、AC邊作圖:AEAB,AFAC,AE=AB,AF=AC,下列結(jié)論①△AEC≌△ABF,EC=FB,ECFB,MA平分∠EMF中,正確的有(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】D

【解析】AEAB,AFAC
∴∠EAB=FAC=90°,
∴∠EAB+BAC=FAC+BAC
∴∠EAC=BAF,
AECABF

∴△AEC≌△ABFSAS);

故①正確;

AEC≌△ABF(已證)

EC=FB;

故②正確;

∵△AEC≌△ABF,
∴∠ACE=AFB,
∵∠FAC=90°
∴∠AFB+AOF=90°,
∴∠ACE+AOF=90°,
∵∠AOF=COM
∴∠ACE+COM=90°,
∴∠CMF=180°-90°=90°,
ECBF;

故③正確;

APCEP,AQBFQ,如圖所示:


∵△EAC≌△BAF,
AP=AQ(全等三角形對(duì)應(yīng)邊上的高相等).
APCEP,AQBFQ,
AM平分∠EMF

故④正確;

綜合上述可得:①②③④共計(jì)4個(gè)正確.

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工人若每小時(shí)生產(chǎn)38個(gè)零件,在規(guī)定時(shí)間內(nèi)還有15個(gè)不能完成,若每小時(shí)生產(chǎn)42個(gè)零件,則可以超額完成5個(gè),問(wèn):規(guī)定時(shí)間是多少?設(shè)規(guī)定時(shí)間為x小時(shí),則可列方程為( )
A.38x﹣15=42x+5
B.38x+15=42x﹣5
C.42x+38x=15+5
D.42x﹣38x=15﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,以BC為直徑的圓交AC于點(diǎn)D,ABD=ACB.

(1)求證:AB是圓的切線;

(2)若點(diǎn)E是BC上一點(diǎn),已知BE=4 ,tanAEB=,ABBC=23,求圓的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=3x2的圖象向左平移2個(gè)單位,得到新的圖象的二次函數(shù)表達(dá)式是(
A.y=3x2+2
B.y=(3x+2)2
C.y=3(x+2)2
D.y=3(x﹣2)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在暑假到來(lái)之前某機(jī)構(gòu)向八年級(jí)學(xué)生推薦了A,B,C三條游學(xué)線路,現(xiàn)對(duì)全級(jí)學(xué)生喜歡哪一條游學(xué)線路作調(diào)查,以決定最終的游學(xué)線路下面的統(tǒng)計(jì)量中最值得關(guān)注的是(

A. 方差 B. 平均數(shù) C. 中位數(shù) D. 眾數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2+m2x2=0的一個(gè)根是1,m的值是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題背景:半角問(wèn)題

1如圖:在四邊形ABCD中,AB=ADBAD=120°,B=ADC=90°E,F分別是BC,CD上的點(diǎn).且∠EAF=60°.探究圖中線段EFBE,FD之間的數(shù)量關(guān)系.

小明同學(xué)探究此半角問(wèn)題的方法是:延長(zhǎng)FD到點(diǎn)G.使DG=BE.連結(jié)AG,先證明ABE≌△ADG,再證明AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是   ;(直接寫(xiě)結(jié)論,不需證明)

探索延伸:當(dāng)聰明的你遇到下面的問(wèn)題該如何解決呢?

2)若將(1)中BAD=120°EAF=60°”換為∠EAF=BAD.其它條件不變。如圖1,試問(wèn)線段EFBEFD具有怎樣的數(shù)量關(guān)系,并證明.

3)如圖2,在四邊形ABCD中,AB=ADB+D=180°,EF分別是邊BC、CD上的點(diǎn),且∠EAF=BAD,請(qǐng)直接寫(xiě)出線段EF、BE、FD它們之間的數(shù)量關(guān)系.(不需要證明)

4)如圖3,在四邊形ABCD中,AB=AD,B+ADC=180°E、F分別是邊BC、CD延長(zhǎng)線上的點(diǎn),且∠EAF=BAD,試問(wèn)線段EFBE、FD具有怎樣的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)角是70°39′,則它的余角的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,EAB邊上一點(diǎn),且∠A=EDF=60°,有下列結(jié)論:①AE=BF;DEF是等邊三角形;③BEF是等腰三角形;④當(dāng)AD=4時(shí),DEF的面積的最小值為.其中結(jié)論正確的個(gè)數(shù)是(。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案