【題目】在某市實施城中村改造的過程中,旺鑫拆遷工程隊承包了一項10000 m2的拆遷工程.由于準(zhǔn)備工作充分,實際拆遷效率比原計劃提高了25%,提前2天完成了任務(wù),請解答下列問題:

(1)旺鑫拆遷工程隊現(xiàn)在平均每天拆遷多少平方米;

(2)為了盡量減少拆遷給市民帶來的不便,在拆遷工作進行了2天后,旺鑫拆遷工程隊的領(lǐng)導(dǎo)決定加快拆遷工作,將余下的拆遷任務(wù)在5天內(nèi)完成,那么旺鑫拆遷工程隊平均每天至少再多拆遷多少平方米?

【答案】(1)“旺鑫”拆遷工程隊現(xiàn)在平均每天拆遷1250 m2(2)“旺鑫”拆遷工程隊平均每天至少再多拆遷250m2

【解析】

(1)設(shè)“旺鑫”折遷工程隊計劃平均每天折遷 ,根據(jù)它們速率提高前后的時間差為天列出方程并解答;

(2)設(shè)“旺鑫”折遷工程隊現(xiàn)在平均每天折遷 ,根據(jù)工作時間必須在天內(nèi)完成列出不等式并解答.

(1)設(shè)旺鑫拆遷工程隊計劃平均每天拆遷x m2

由題意,得=2,

解得x=1000,

經(jīng)檢驗,x=1000是原方程的解并符合題意.

(1+25%)×1000=1250(m2).

答:設(shè)旺鑫拆遷工程隊現(xiàn)在平均每天拆遷1250 m2

(2)設(shè)旺鑫拆遷工程隊現(xiàn)在平均每天拆遷y m2

由題意,得5(1250+y)10000﹣2×1250

解得y250.

答:旺鑫拆遷工程隊平均每天至少再多拆遷250m2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=36°,AB=AC,CD是△ABC的角平分線,若在邊BC上截取CE=CB,連接DE,則圖中等腰三角形有(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖示二次函數(shù)y=ax2+bx+c的對稱軸在y軸的右側(cè),其圖象與x軸交于點A(﹣1,0)與點C(x2,0),且與y軸交于點B(0,﹣2),小強得到以下結(jié)論:0a2;﹣1b0;c=﹣1;當(dāng)|a|=|b|時x2﹣1;以上結(jié)論中正確結(jié)論的序號為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ADBCD,EFBCF,交ABG,交CA延長線于E,∠1=2

求證:AD平分∠BAC,填寫分析和證明中的空白.

證明:∵ADBCEFBC(已知)

∴__________________

∴______=______(兩直線平行,內(nèi)錯角相等)

______=______(兩直線平行,同位角相等)

______(已知),∴______

AD平分∠BAC______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=( 。

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC是等腰三角形,動點P在斜邊AB所在的直線上,以PC為直角邊作等腰三角形PCQ,其中∠PCQ=90°,探究并解決下列問題:

(1)如圖①,若點P在線段AB上,且AC=1+,PA=,則:

①線段PB= ,PC= ;

②猜想:PA2,PB2,PQ2三者之間的數(shù)量關(guān)系為

(2)如圖②,若點P在AB的延長線上,在(1)中所猜想的結(jié)論仍然成立,請你利用圖②給出證明過程;

(3)若動點P滿足,求的值.(提示:請利用備用圖進行探求)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

如圖,在正方形ABCD中,點E、F分別在CD、BC上,且BF=CE,連接BE、AF相交于點G,則下列結(jié)論不正確的是( )

ABE=AF B∠DAF=∠BEC C∠AFB+∠BEC=90° DAG⊥BE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4,則以下四個結(jié)論中: ①△BDE是等邊三角形; AEBC ③△ADE的周長是9; ④∠ADE=BDC.其中正確的序號是(  )

A.②③④B.①②④C.①②③D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系中的任意兩點P1(x1,y1),P2(x2,y2),我們把|x1x2|+|y1y2|叫做P1、P2兩點間的直角距離,記作d(P1,P2)

(1) P0(2,3),O為坐標(biāo)原點,則d(O,P0) ;

(2)已知O為坐標(biāo)原點,動點P(x,y)滿足d(O,P)1,請寫出xy之間滿足的關(guān)系式,并在所給的直角坐標(biāo)系中畫出所有符合條件的點P所組成的圖形.

查看答案和解析>>

同步練習(xí)冊答案