如圖,矩形ABCD內接于⊙O,且AB=,BC=1,求圖中陰影部分所表示的扇形OAD的面積.
 

解析試題分析:先矩形ABCD內接于⊙O,可得∠B=90o,即可得到AC是直徑,在Rt△ABC中,根據(jù)勾股定理求得AC的長,即可得到扇形OAD的半徑,同時可得到∠BAC=30o,從而可以得到扇形的圓心角的度數(shù),最后根據(jù)扇形的面積公式即可求得結果.
因為矩形ABCD內接于⊙O,所以∠B=90o
所以AC是直徑,AC過點O.
Rt△ABC中,AB=,BC=1,
所以AC=2,扇形OAD的半徑R=="1"
∠BAC=30o,因為AB//DC,所以∠ACD=30o,所以∠AOD=60o
所以S扇形OAD.
考點:本題考查的是矩形的性質,勾股定理,扇形的面積公式
點評:解答本題的關鍵是熟練掌握90°的角所對的弦是直徑,同時熟記扇形的面積公式:,注意在使用公式時度不帶單位.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀(1)的推導并填空,然后解答第(2)題.
(1)當a<0,∵ax2+bx+c=a(x+
b
2a
2+A(2),又∵(x+
b
2a
2≥0,∴a(x+
b
2a
2≤0,ax2+bx+c=a(x+
b
2a
2+A≤A,即:無論x怎樣變化,y=ax2+bx+c(a<0)的所有取值中,以A為最大;且在x=B時,y的值等于A,其中,用a,b,c表示,A=精英家教網
 
,B=
 
;
(2)為了綠化城市,我市準備在如圖的矩形ABCD內規(guī)劃一塊地面,修建一個矩形草坪PQRC.按計劃要求,草坪的兩邊RC與CP分別在BC和CD上,且草坪不能超過文物保護區(qū)△AEF的邊界EF.經測量知,AB=CD=100m,BC=AD=80m,AE=30m,AF=20m.應如何確定草坪的位置,才能使草坪占地面積最大又符合設計要求并求出這個最大面積(結果保留到個位,解答時可應用(1)的結論)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,矩形ABCD內接于⊙O,且AB=
3
,BC=1,則圖中陰影部分所表示的扇形AOD的面積為( 。
A、
π
3
B、
π
4
C、
π
6
D、
π
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,矩形ABCD內接于⊙O,且AB=
3
,BC=1,求圖中陰影部分所表示的扇形OAD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•沙河口區(qū)模擬)如圖,矩形ABCD內接于⊙O,且AB=
3
,BC=1.則圖中陰影部分的面積為
π
6
π
6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•桂平市三模)如圖,矩形ABCD內接于⊙O,AB=3AD,對角線AC中點O為圓心,BK⊥AC,垂足為K.DH∥KB,DH分別與AC、AB、⊙O及CB的延長線相交于點E、F、G、H.
(1)求證:AE=CK;
(2)設AB=y,BK=x,試求y與x的函數(shù)關系式;
(3)若DE=6,求⊙O的半徑長.

查看答案和解析>>

同步練習冊答案