【題目】如圖,正五邊形ABCDE放入某平面直角坐標(biāo)系后,若頂點(diǎn)A,B,C,D的坐標(biāo)分別是(0,a),(﹣3,2),(b,m),(c,m),則點(diǎn)E的坐標(biāo)是( 。
A.(2,﹣3)
B.(2,3)
C.(3,2)
D.(3,﹣2)
【答案】C
【解析】解:∵點(diǎn)A坐標(biāo)為(0,a),
∴點(diǎn)A在該平面直角坐標(biāo)系的y軸上,
∵點(diǎn)C、D的坐標(biāo)為(b,m),(c,m),
∴點(diǎn)C、D關(guān)于y軸對(duì)稱,
∵正五邊形ABCDE是軸對(duì)稱圖形,
∴該平面直角坐標(biāo)系經(jīng)過點(diǎn)A的y軸是正五邊形ABCDE的一條對(duì)稱軸,
∴點(diǎn)B、E也關(guān)于y軸對(duì)稱,
∵點(diǎn)B的坐標(biāo)為(﹣3,2),
∴點(diǎn)E的坐標(biāo)為(3,2).
故選:C.
由題目中A點(diǎn)坐標(biāo)特征推導(dǎo)得出平面直角坐標(biāo)系y軸的位置,再通過C、D點(diǎn)坐標(biāo)特征結(jié)合正五邊形的軸對(duì)稱性質(zhì)就可以得出E點(diǎn)坐標(biāo)了.本題考查了平面直角坐標(biāo)系的點(diǎn)坐標(biāo)特征及正五邊形的軸對(duì)稱性質(zhì),解題的關(guān)鍵是通過頂點(diǎn)坐標(biāo)確認(rèn)正五邊形的一條對(duì)稱軸即為平面直角坐標(biāo)系的y軸.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個(gè)反比例函數(shù)y1= (其中k1>0)和y2= 在第一象限內(nèi)的圖象依次是C1和C2 , 點(diǎn)P在C1上,矩形PCOD交C2于A、B兩點(diǎn),OA的延長線交C1于點(diǎn)E,EF⊥x軸于F點(diǎn),且圖中四邊形BOAP的面積為6,則EF:AC為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=3,AD=4,動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度,沿AB向點(diǎn)B移動(dòng);同時(shí)點(diǎn)P從點(diǎn)B出發(fā),仍以每秒1個(gè)單位的速度,沿BC向點(diǎn)C移動(dòng),連接QP,QD,PD.若兩個(gè)點(diǎn)同時(shí)運(yùn)動(dòng)的時(shí)間為x秒(0<x≤3),解答下列問題:
(1)設(shè)△QPD的面積為S,用含x的函數(shù)關(guān)系式表示S;當(dāng)x為何值時(shí),S有最大值?并求出最小值;
(2)是否存在x的值,使得QP⊥DP?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,且與雙曲線y= 交于點(diǎn)C(1,a).
(1)試確定雙曲線的函數(shù)表達(dá)式;
(2)將l1沿y軸翻折后,得到l2 , 畫出l2的圖象,并求出l2的函數(shù)表達(dá)式;
(3)在(2)的條件下,點(diǎn)P是線段AC上點(diǎn)(不包括端點(diǎn)),過點(diǎn)P作x軸的平行線,分別交l2于點(diǎn)M,交雙曲線于點(diǎn)N,求S△AMN的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線x-2y=-5和x+y=1分別與x軸交于A、B兩點(diǎn),這兩條線的交點(diǎn)為P.
(1)求點(diǎn)P的坐標(biāo).
(2)求△APB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖反映的過程是:小強(qiáng)從家去菜地澆水,又去玉米地除草,然后回家.如果菜地和玉米地的距離為a千米,小強(qiáng)在玉米地除草比在菜地澆水多用的時(shí)間為b分鐘,則a,b的值分別為( )
A.1.1,8
B.0.9,3
C.1.1,12
D.0.9,8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】樂平街上新開張了一家“好又多”超市,這個(gè)星期天,張明和媽媽去這家新開張的超市買東西,如圖反映了張明從家到超市的時(shí)間t(分鐘)與距離s(米)之間關(guān)系的一幅圖:①圖中反映了哪兩個(gè)變量之間的關(guān)系?超市離家多遠(yuǎn)?②張明從家出發(fā)到達(dá)超市用了多少時(shí)間?從超市返回家花了多少時(shí)間?
③張明從家出發(fā)后20分鐘到30分鐘內(nèi)可能在做什么?④張明從家到超市時(shí)的平均速度是多少?返回時(shí)的平均速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年我市某公司分兩次采購了一批大蒜,第一次花費(fèi)40萬元,第二次花費(fèi)60萬元.已知第一次采購時(shí)每噸大蒜的價(jià)格比去年的平均價(jià)格上漲了500元,第二次采購時(shí)每噸大蒜的價(jià)格比去年的平均價(jià)格下降了500元,第二次的采購數(shù)量是第一次采購數(shù)量的兩倍.
(1)試問去年每噸大蒜的平均價(jià)格是多少元?
(2)該公司可將大蒜加工成蒜粉或蒜片,若單獨(dú)加工成蒜粉,每天可加工8噸大蒜,每噸大蒜獲利1000元;若單獨(dú)加工成蒜片,每天可加工12噸大蒜,每噸大蒜獲利600元.由于出口需要,所有采購的大蒜必需在30天內(nèi)加工完畢,且加工蒜粉的大蒜數(shù)量不少于加工蒜片的大蒜數(shù)量的一半,為獲得最大利潤,應(yīng)將多少噸大蒜加工成蒜粉?最大利潤為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)絡(luò)營銷部門為了統(tǒng)計(jì)某市網(wǎng)友2016年12月12日的網(wǎng)購情況,從該市當(dāng)天參與網(wǎng)購的顧客中隨機(jī)抽查了男女各30人,統(tǒng)計(jì)其網(wǎng)購金額,得到如下頻率分布直方圖:
網(wǎng)購達(dá)人 | 非網(wǎng)購達(dá)人 | 合計(jì) | |
男性 | 30 | ||
女性 | 12 | 30 | |
合計(jì) | 60 |
若網(wǎng)購金額超過2千元的顧客稱為“網(wǎng)購達(dá)人”,網(wǎng)購金額不超過2千元的顧客稱為“非網(wǎng)購達(dá)人”.
(Ⅰ)若抽取的“網(wǎng)購達(dá)人”中女性占12人,請(qǐng)根據(jù)條件完成上面的2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為“網(wǎng)購達(dá)人”與性別有關(guān)?
(Ⅱ)該營銷部門為了進(jìn)一步了解這60名網(wǎng)友的購物體驗(yàn),從“非網(wǎng)購達(dá)人”、“網(wǎng)購達(dá)人”中用分層抽樣的方法確定12人,若需從這12人中隨機(jī)選取3人進(jìn)行問卷調(diào)查.設(shè)ξ為選取的3人中“網(wǎng)購達(dá)人”的人數(shù),求ξ的分布列和數(shù)學(xué)期望.
(參考公式: ,其中n=a+b+c+d)
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com