幾何模型:
條件:如圖,A、B是直線l同旁的兩個(gè)定點(diǎn).
問(wèn)題:在直線l上確定一點(diǎn)P,使PA+PB的值最小.
方法:作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A,連接A′B交l于點(diǎn)P,則PA+PB=A′B的值最小(不必證明).
模型應(yīng)用:
(1)如圖1,正方形ABCD的邊長(zhǎng)為2,E為AB的中點(diǎn),P是AC上一動(dòng)點(diǎn).連接BD,由正方形對(duì)稱性可知,B與D關(guān)于直線AC對(duì)稱.連接ED交AC于P,則PB+PE的最小值是
5
5

(2)如圖2,⊙O的半徑為2,點(diǎn)A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動(dòng)點(diǎn),求PA+PC的最小值;
(3)如圖3,AB、CD是半徑為5的⊙O的兩條弦,AB=8,CD=6,MN是直徑,AB⊥MN于點(diǎn)E,CD⊥MN于點(diǎn)F,P為EF上的任意一點(diǎn),求PA+PC的最小值.
分析:(1)由所給的例子可知,PB+PE的最小值是DE的長(zhǎng),在Rt△ADE中,利用勾股定理即可得出DE的長(zhǎng);
(2)作A關(guān)于OB的對(duì)稱點(diǎn)A′,連接A′C,交OB于P,PA+PC的最小值即為A′C的長(zhǎng),求出A′C的長(zhǎng)即可.
(3)A、B兩點(diǎn)關(guān)于MN對(duì)稱,因而PA+PC=PB+PC,即當(dāng)B、C、P在一條直線上時(shí),PA+PC的最小,即BC的值就是PA+PC的最小值.
解答:解:(1)由所給的例子可知,PB+PE的最小值是DE的長(zhǎng),
∵正方形ABCD的邊長(zhǎng)為2,E為AB的中點(diǎn),
∴AE=1,
在Rt△ADE中,
DE=
AD2+AE2
=
22+12
=
5

則PB+PE的最小值是:
5
;

(2)如圖2所示:作A關(guān)于OB的對(duì)稱點(diǎn)A′,連接A′C,交OB于P,PA+PC的最小值即為A′C的長(zhǎng),
∵∠AOC=60°
∴∠A′OC=120°
作OD⊥A′C于D,則∠A′OD=60°
∵OA′=OA=2
∴A′D=
3

∴A′C=2
3

故PA+PC的最小值為2
3
;

(3)如圖3,連接OA,OB,OC,作CH垂直于AB于H.
根據(jù)垂徑定理,得到BE=
1
2
AB=4,CF=
1
2
CD=3,
∴OE=
OB2-BE2
=
52-42
=3,
OF=
OC2-CF2
=
52-32
=4,
∴CH=OE+OF=3+4=7,
BH=BE+EH=BE+CF=4+3=7,
在直角△BCH中根據(jù)勾股定理得到BC=7
2
,
則PA+PC的最小值為7
2

故答案為:
5
點(diǎn)評(píng):本題考查的是軸對(duì)稱--最短路線的問(wèn)題,涉及到正方形、圓、等腰直角三角形的有關(guān)知識(shí),熟知兩點(diǎn)之間線段最短的知識(shí)是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)幾何模型:條件:如圖,A、B是直線l同旁的兩個(gè)定點(diǎn).
問(wèn)題:在直線l上確定一點(diǎn)P,使PA+PB的值最。
方法:作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A′,連接A′B交l于點(diǎn)P,則PA+PB=A′P+PB=A′B,
由“兩點(diǎn)之間,線段最短”可知,點(diǎn)P即為所求的點(diǎn).
模型應(yīng)用:
(1)如圖1,正方形ABCD的邊長(zhǎng)為2,E為AB的中點(diǎn),P是AC上一動(dòng)點(diǎn).則PB+PE的最小值是
 
;
(2)如圖2,∠AOB=45°,P是∠AOB內(nèi)一定點(diǎn),PO=10,Q、R分別是OA、OB上的動(dòng)點(diǎn),求△PQR周長(zhǎng)的最小值.(要求畫(huà)出示意圖,寫(xiě)出解題過(guò)程)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀理解題:
【幾何模型】
條件:如圖1,A、B是直線l同旁的兩個(gè)定點(diǎn).
問(wèn)題:在直線l上確定一點(diǎn)P,使PA+PB的值最小.
方法:作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A′,連接A′B交l于點(diǎn)P,則PA+PB=A′P+PB=A′B,
由“兩點(diǎn)之間,線段最短”可知,點(diǎn)P即為所求的點(diǎn).

【模型應(yīng)用】
如圖2所示,兩個(gè)村子A、B在一條河CD的同側(cè),A、B兩村到河邊的距離分別為AC=1千米,BD=3千米,CD=3千米.現(xiàn)要在河邊CD上建造一水廠,向A、B兩村送水,鋪設(shè)水管的工程費(fèi)用為每千米15000元,請(qǐng)你在CD上選擇水廠位置,使鋪設(shè)水管的費(fèi)用最省,并求出最省的鋪設(shè)水管的費(fèi)用W.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

幾何模型:
條件:如圖1,A、B是直線l同旁的兩個(gè)定點(diǎn).

問(wèn)題:在直線l上確定一點(diǎn)P,使PA+PB的值最。
方法:作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A′,連接A′B交l于點(diǎn)P,則PA+PB=A′B的值最。ú槐刈C明).
模型應(yīng)用:
(1)如圖2,正方形ABCD的邊長(zhǎng)為2,E為AB的中點(diǎn),P是AC上一動(dòng)點(diǎn).連接BD,由正方形對(duì)稱性可知,B與D關(guān)于直線AC對(duì)稱.連接ED交AC于P,則PB+PE的最小值是
5
5

(2)如圖3,⊙O的半徑為2,點(diǎn)A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動(dòng)點(diǎn),求PA+PC的最小值是
2
3
2
3
;
(3)如圖4,∠AOB=45°,P是∠AOB內(nèi)一點(diǎn),PO=5,Q、R分別是OA、OB上的動(dòng)點(diǎn),求△PQR周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:期中題 題型:解答題

閱讀理解題:【幾何模型】
條件:如圖,A、B是直線l同旁的兩個(gè)定點(diǎn),問(wèn)題:在直線l上確定一點(diǎn)P,使PA+PB的值最小。
方法:作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A′,連接A′B交l于點(diǎn)P,則PA+PB=A′P+PB=A′B,由“兩點(diǎn)之間,線段最短”可知,點(diǎn)P即為所求的點(diǎn)。
【模型應(yīng)用】
(1)如圖1,正方形ABCD的邊長(zhǎng)為2,E為AB的中點(diǎn),P是AC上一動(dòng)點(diǎn).求出PB+PE的最小值。(畫(huà)出示意圖,并解答)
(2)如圖2,∠AOB=45°,P是∠AOB內(nèi)一定點(diǎn),PO=10,Q、R分別是OA、OB上的動(dòng)點(diǎn),求△PQR周長(zhǎng)的最小值。(要求畫(huà)出示意圖,寫(xiě)出解題過(guò)程)

查看答案和解析>>

同步練習(xí)冊(cè)答案