【題目】某種水彩筆,在購(gòu)買時(shí),若同時(shí)額外購(gòu)買筆芯,每個(gè)優(yōu)惠價(jià)為3元,使用期間,若備用筆芯不足時(shí)需另外購(gòu)買,每個(gè)5元.現(xiàn)要對(duì)在購(gòu)買水彩筆時(shí)應(yīng)同時(shí)購(gòu)買幾個(gè)筆芯作出選擇,為此收集了這種水彩筆在使用期內(nèi)需要更換筆芯個(gè)數(shù)的30組數(shù)據(jù),整理繪制出下面的條形統(tǒng)計(jì)圖:
設(shè)x表示水彩筆在使用期內(nèi)需要更換的筆芯個(gè)數(shù),y表示每支水彩筆在購(gòu)買筆芯上所需要的費(fèi)用(單位:元),n表示購(gòu)買水彩筆的同時(shí)購(gòu)買的筆芯個(gè)數(shù).
(1)若n=9,求y與x的函數(shù)關(guān)系式;
(2)若要使這30支水彩筆“更換筆芯的個(gè)數(shù)不大于同時(shí)購(gòu)買筆芯的個(gè)數(shù)”的頻率不小于0.5,確定n的最小值;
(3)假設(shè)這30支筆在購(gòu)買時(shí),每支筆同時(shí)購(gòu)買9個(gè)筆芯,或每支筆同時(shí)購(gòu)買10個(gè)筆芯,分別計(jì)算這30支筆在購(gòu)買筆芯所需費(fèi)用的平均數(shù),以費(fèi)用最省作為選擇依據(jù),判斷購(gòu)買一支水彩筆的同時(shí)應(yīng)購(gòu)買9個(gè)還是10個(gè)筆芯.
【答案】
(1)
解:當(dāng)n=9時(shí),y= =
(2)
解:根據(jù)題意,“更換筆芯的個(gè)數(shù)不大于同時(shí)購(gòu)買筆芯的個(gè)數(shù)”的頻率不小于0.5,則“更換筆芯的個(gè)數(shù)不大于同時(shí)購(gòu)買筆芯的個(gè)數(shù)”的頻數(shù)大于30×0.5=15,
根據(jù)統(tǒng)計(jì)圖可得,需要更換筆芯的個(gè)數(shù)為7個(gè)對(duì)應(yīng)的頻數(shù)為4,8個(gè)對(duì)應(yīng)的頻數(shù)為6,9個(gè)對(duì)應(yīng)的頻數(shù)為8,
因此當(dāng)n=9時(shí),“更換筆芯的個(gè)數(shù)不大于同時(shí)購(gòu)買筆芯的個(gè)數(shù)”的頻數(shù)=4+6+8=18>15.
因此n的最小值為9.
(3)
解:若每支筆同時(shí)購(gòu)買9個(gè)筆芯,
則所需費(fèi)用總和=(4+6+8)×3×9+7×(3×9+5×1)+5×(3×9+5×2)=895,
若每支筆同時(shí)購(gòu)買10個(gè)筆芯,
則所需費(fèi)用總和=(4+6+8+7)×3×10+5×(3×10+5×1)=925,
因此應(yīng)購(gòu)買9個(gè)筆芯.
【解析】(1)根據(jù)題意列出函數(shù)關(guān)系式;
。2)由條形統(tǒng)計(jì)圖得到需要更換筆芯的個(gè)數(shù)為7個(gè)對(duì)應(yīng)的頻數(shù)為4,8個(gè)對(duì)應(yīng)的頻數(shù)為6,9個(gè)對(duì)應(yīng)的頻數(shù)為8,即可.
。3)分兩種情況計(jì)算 此題是一次函數(shù)的應(yīng)用,主要考查了一次函數(shù)的性質(zhì),統(tǒng)計(jì)圖,解本題的關(guān)鍵是統(tǒng)計(jì)圖的分析.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解頻數(shù)與頻率(落在各個(gè)小組內(nèi)的數(shù)據(jù)的個(gè)數(shù)為頻數(shù);每一小組的頻數(shù)與數(shù)據(jù)總數(shù)(樣本容量n)的比值叫做這一小組的頻率),還要掌握條形統(tǒng)計(jì)圖(能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1的小正方形組成的66網(wǎng)格中,A,B,C是格點(diǎn)(我們把組成網(wǎng)格的小正方形的頂點(diǎn),稱為格點(diǎn)),其中點(diǎn)C在直線AB外。
(1)過A點(diǎn)畫AB的垂線AG;
(2)過C點(diǎn)畫AB的平行線CH;
(3)連接BC,線段BC與線段AB的關(guān)系:______________;
(4)_____________________是點(diǎn)C到直線AB的距離;
(5)因?yàn)橹本外一點(diǎn)和直線上各點(diǎn)連接的所有線段中,垂線段最短,所以線段AC,BC的大小關(guān)系是______________(用“<”號(hào)連接)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生的體能情況,隨機(jī)選取了1000名學(xué)生進(jìn)行調(diào)查,并記錄了他們對(duì)長(zhǎng)跑、短跑、跳繩、跳遠(yuǎn)四個(gè)項(xiàng)目的喜歡情況,整理成以下統(tǒng)計(jì)表,其中“√”表示喜歡,“×”表示不喜歡.
項(xiàng)目 | 長(zhǎng)跑 | 短跑 | 跳繩 | 跳遠(yuǎn) |
200 | √ | × | √ | √ |
300 | × | √ | × | √ |
150 | √ | √ | √ | × |
200 | √ | × | √ | × |
150 | √ | × | × | × |
(1)估計(jì)學(xué)生同時(shí)喜歡短跑和跳繩的概率;
(2)估計(jì)學(xué)生在長(zhǎng)跑、短跑、跳繩、跳遠(yuǎn)中同時(shí)喜歡三個(gè)項(xiàng)目的概率;
(3)如果學(xué)生喜歡長(zhǎng)跑、則該同學(xué)同時(shí)喜歡短跑、跳繩、跳遠(yuǎn)中哪項(xiàng)的可能性大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABO的頂點(diǎn)O在坐標(biāo)原點(diǎn),點(diǎn)B在x軸上,∠ABO=90°,∠AOB=30°,OB=2 ,反比例函數(shù)y= (x>0)的圖象經(jīng)過OA的中點(diǎn)C,交AB于點(diǎn)D.
(1)求反比例函數(shù)的關(guān)系式;
(2)連接CD,求四邊形CDBO的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD對(duì)角線交于點(diǎn)O,BE∥AC,AE∥BD,EO與AB交于點(diǎn)F.
(1)試判斷四邊形AEBO的形狀,并說明你的理由;
(2)求證:EO=DC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)圖1是一個(gè)長(zhǎng)為2a,寬為2b的長(zhǎng)方形,沿圖中虛線剪開分成四塊小長(zhǎng)方形,然后按圖2的形狀拼成一個(gè)正方形.
圖2的陰影部分的正方形的邊長(zhǎng)是______.
用兩種不同的方法求圖中陰影部分的面積.
(方法1)= ____________;
(方法2)= ____________;
(3) 觀察圖2,寫出(a+b)2,(a-b)2,ab這三個(gè)代數(shù)式之間的等量關(guān)系;
根據(jù)題中的等量關(guān)系,解決問題:若m+n=10,m-n=6,求mn的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
如圖①,在平面直角坐標(biāo)系中,若已知點(diǎn)A(xA,yA)和點(diǎn)C(xC,yC),點(diǎn)M為線段AC的中點(diǎn),利用三角形全等的知識(shí),有△AMP≌△CMQ,則有PM=MQ,PA=QC,即xM﹣xA=xC﹣xM,yA﹣yM=yM﹣yC,從而有,即中點(diǎn)M的坐標(biāo)為(,).
基本知識(shí):
(1)如圖①,若A、C點(diǎn)的坐標(biāo)分別A(﹣1,3)、C(3,﹣1),求AC中點(diǎn)M的坐標(biāo);
方法提煉:
(2)如圖②,在平面直角坐標(biāo)系中,ABCD的頂點(diǎn)A、B、C的坐標(biāo)分別為(﹣1,5)、(﹣2,2)、(3,3),求點(diǎn)D的坐標(biāo);
(3)如圖③,點(diǎn)A是反比例函數(shù)y=(x>0)上的動(dòng)點(diǎn),過點(diǎn)A作AB∥x軸,AC∥y軸,分別交函數(shù)y═(x>0)的圖象于點(diǎn)B、C,點(diǎn)D是直線y=2x上的動(dòng)點(diǎn),請(qǐng)?zhí)剿髟邳c(diǎn)A運(yùn)動(dòng)過程中,以A、B、C、D為頂點(diǎn)的四邊形能否為平行四邊形,若能,求出此時(shí)點(diǎn)A的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將四邊形ABCD稱為“基本圖形”,且各點(diǎn)的坐標(biāo)分別為A(4,4),B(1,3),C(3,3),D(3,1).
①畫出“基本圖形”關(guān)于原點(diǎn)O對(duì)稱的四邊形A1B1C1D1 , 并填出A1 , B1 , C1 , D1的坐標(biāo);
②畫出“基本圖形”繞B點(diǎn)順時(shí)針旋轉(zhuǎn)90°所成的四邊形A2B2C2D2
A1( , )B1( , )
C1( , )D1( , )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com