【題目】如圖,在每個(gè)小正方形的邊長為1的網(wǎng)格中,點(diǎn)A,B,C,D都在格點(diǎn)上.
(Ⅰ)AC的長為 ;
(Ⅱ)將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得矩形AEFG,其中,點(diǎn)C的對應(yīng)點(diǎn)F落在格線AD的延長線上,請用無刻度的直尺在網(wǎng)格中畫出矩形AEFG,并簡要說明點(diǎn)E,G的位置是如何找到的. .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年我國多個(gè)省市遭受嚴(yán)重干旱,受旱災(zāi)的影響,4月份,我市某蔬菜價(jià)格呈上升趨勢,其前四周每周的平均銷售價(jià)格變化如表:
周數(shù)x | 1 | 2 | 3 | 4 |
價(jià)格y(元/千克) | 2 | 2.2 | 2.4 | 2.6 |
(1)請觀察題中的表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識直接寫出4月份y與x的函數(shù)關(guān)系式;
(2)進(jìn)入5月,由于本地蔬菜的上市,此種蔬菜的平均銷售價(jià)格y(元/千克)從5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y與周數(shù)x的變化情況滿足二次函數(shù)y=﹣x2+bx+c,請求出5月份y與x的函數(shù)關(guān)系式;
(3)若4月份此種蔬菜的進(jìn)價(jià)m(元/千克)與周數(shù)x所滿足的函數(shù)關(guān)系為m=x+1.2,5月份此種蔬菜的進(jìn)價(jià)m(元/千克)與周數(shù)x所滿足的函數(shù)關(guān)系為m=﹣x+2.試問4月份與5月份分別在哪一周銷售此種蔬菜一千克的利潤最大?且最大利潤分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春秋旅行社為吸引市民組團(tuán)去天水灣風(fēng)景區(qū)旅游,推出了如下收費(fèi)標(biāo)準(zhǔn):
某單位組織員工去天水灣風(fēng)景區(qū)旅游,共支付給春秋旅行社旅游費(fèi)用27000元,請問該單位這次共有多少員工去天水灣風(fēng)景區(qū)旅游?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】類比特殊四邊形的學(xué)習(xí),我們可以定義:有一組對角相等而另一組對角不相等的凸四邊形叫做“等對角四邊形”.
探索體驗(yàn)
(1)如圖①,已知四邊形ABCD是“等對角四邊形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度數(shù).
(2)如圖②,若AB=AD=a,CB=CD=b,且a≠b,那么四邊形ABCD是“等對角四邊形”嗎?試說明理由.
嘗試應(yīng)用
(3)如圖③,在邊長為6的正方形木板ABEF上裁出“等對角四邊形”ABCD,若已經(jīng)確定DA=4,∠DAB=60°,是否在正方形ABEF內(nèi)(包括邊上)存在一點(diǎn)點(diǎn)C,使四邊形ABCD以∠DAB=∠BCD為等對角的四邊形的面積最大?若存在,試求出四邊形ABCD的最大面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,將對角線AC繞對角線交點(diǎn)O旋轉(zhuǎn),分別交邊AD、BC于點(diǎn)E、F,點(diǎn)P是邊DC上的一個(gè)動(dòng)點(diǎn),且保持DP=AE,連接PE、PF,設(shè)AE=x(0<x<3).
(1)填空:PC= ,FC= 。(用含x的代數(shù)式表示)
(2)求△PEF面積的最小值;
(3)在運(yùn)動(dòng)過程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于 x 的函數(shù) y=(m﹣1)x2+2x+m 圖象與坐標(biāo)軸只有 2 個(gè)交點(diǎn),則m=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=x-4x+3的圖象交x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)), 交y軸于點(diǎn)C.
(1)求直線BC的解析式;
(2)點(diǎn)D是在直線BC下方的拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)△BCD的面積最大時(shí),求D點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在坡頂A處的同一水平面上有一座大型紀(jì)念碑BC,某同學(xué)在斜坡底P處測得該碑的碑頂B的仰角為45°,然后他們沿著坡度為1:2.4的斜坡AP攀行了26米到達(dá)坡頂A,在坡頂A處又測得該碑的碑頂B的仰角為76°,求紀(jì)念碑BC的高度(結(jié)果精確到0.1米).(過點(diǎn)A作AD⊥PO,垂足為點(diǎn)D.坡度=AD:PD)(參考數(shù)據(jù):sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點(diǎn),與y軸交于點(diǎn)N,其頂點(diǎn)為D.
(1)求拋物線及直線AC的函數(shù)關(guān)系式;
(2)若P是拋物線上位于直線AC上方的一個(gè)動(dòng)點(diǎn),求△APC的面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)在對稱軸上是否存在一點(diǎn)M,使△ANM的周長最。舸嬖,請求出M點(diǎn)的坐標(biāo)和△ANM周長的最小值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com