【題目】如圖,在△ABC中,AB=AC,BE平分∠ABC交AC于點(diǎn)E,過(guò)點(diǎn)E作EF∥BC交AB于點(diǎn)F,D是BC邊上的中點(diǎn),連結(jié)AD.
(1)若∠BAD=55°,求∠C的度數(shù);
(2)猜想FB與FE的數(shù)量關(guān)系,并證明你的猜想.
【答案】(1)35°;(2)FB=FE,證明見(jiàn)解析.
【解析】
(1)利用等腰三角形的三線合一的性質(zhì)可得∠ADB=90°,再利用直角三角形的性質(zhì)求出∠ABC,然后根據(jù)等腰三角形的性質(zhì)即可求得結(jié)果;
(2)猜想FB=FE,利用角平分線的性質(zhì)和平行線的性質(zhì)可得∠FBE=∠FEB,再利用等腰三角形的判定方法即可證明猜想.
(1)解:∵AB=AC,∴∠C=∠ABC,
∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,
∵∠BAD=55°,∴∠C=∠ABC=90°﹣55°=35°;
(2)猜想:FB=FE.
證明:∵BE平分∠ABC,∴∠ABE=∠CBE,
∵EF∥BC,∴∠FEB=∠CBE,
∴∠FBE=∠FEB,
∴FB=FE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在水平地面點(diǎn)A處有一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行路線是一條拋物線,在地面上落點(diǎn)為B,有人在直線AB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放若干個(gè)無(wú)蓋的圓柱形桶.試圖讓網(wǎng)球落入桶內(nèi),已知AB=4米,AC=3米,網(wǎng)球飛行最大高度OM=5米,圓柱形桶的直徑為0.5米,高為0.3米(網(wǎng)球的體積和圓柱形桶的厚度忽略不計(jì)).當(dāng)豎直擺放圓柱形桶至少________個(gè)時(shí),網(wǎng)球可以落入桶內(nèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某氣球內(nèi)充滿一定質(zhì)量的氣體,當(dāng)溫度不變時(shí),氣球內(nèi)氣體的氣壓p(kPa)是氣體體積V(m3)的反比例函數(shù),其圖象如圖所示.
(1)寫出這一函數(shù)的表達(dá)式.
(2)當(dāng)氣體體積為1 m3時(shí),氣壓是多少?
(3)當(dāng)氣球內(nèi)的氣壓大于140 kPa時(shí),氣球?qū)⒈?/span>,為了安全考慮,氣體的體積應(yīng)不小于多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)圖象如圖所示,對(duì)稱軸為,給出下列結(jié)論:①;②;③;④,其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的高線,BD=CD,點(diǎn)E是AD上一點(diǎn),BE=BC,將△ABE沿BE所在直線折疊,點(diǎn)A落在點(diǎn)A′位置上,連接AA',BA′,EA′與AC相交于點(diǎn)H,BA′與AC相交于點(diǎn)F.小夏依據(jù)上述條件,寫出下列四個(gè)結(jié)論:①∠EBC=60°;②∠BFC=60°;③∠EA′A=60°;④∠A′HA=60°.以上結(jié)論中,正確的是( 。
A.①B.③④C.①②③D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在紙板中,,,,是上一點(diǎn),過(guò)點(diǎn)沿直線剪下一個(gè)與相似的小三角形紙板,如果有種不同的剪法,那么長(zhǎng)的取值范圍是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形的邊長(zhǎng).某一時(shí)刻,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)從點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng),問(wèn):
(1)經(jīng)過(guò)多少時(shí)間,的面積等于矩形面積的?
(2)是否存在時(shí)刻t,使以A,M,N為頂點(diǎn)的三角形與相似?若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一平面內(nèi),若一個(gè)點(diǎn)到一條直線的距離不大于1,則稱這個(gè)點(diǎn)是該直線的“伴侶點(diǎn)”.
在平面直角坐標(biāo)系中,已知點(diǎn)M(1,0),過(guò)點(diǎn)M作直線l平行于y軸,點(diǎn)A(﹣1,a),點(diǎn)B(b,2a),點(diǎn) C(﹣,a﹣1),將三角形ABC進(jìn)行平移,平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)為D,點(diǎn)B的對(duì)應(yīng)點(diǎn)為E,點(diǎn)C的對(duì)應(yīng)點(diǎn)為F.
(1)試判斷點(diǎn)A是否是直線l的“伴侶點(diǎn)”?請(qǐng)說(shuō)明理由;
(2)若點(diǎn)F剛好落在直線l上,F的縱坐標(biāo)為a+b,點(diǎn)E落在x軸上,且三角形MFD的面積為,試判斷點(diǎn)B是否是直線l的“伴侶點(diǎn)”?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“揚(yáng)州漆器”名揚(yáng)天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(jià)(元)之間存在一次函數(shù)關(guān)系,如圖所示.
(1)求與之間的函數(shù)關(guān)系式;
(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的利潤(rùn)最大,最大利潤(rùn)是多少?
(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤(rùn)中捐出150元給希望工程,為了保證捐款后每天剩余利潤(rùn)不低于3600元,試確定該漆器筆筒銷售單價(jià)的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com