【題目】如圖,在半⊙O中,AB是直徑,點D是⊙O上一點,點C是的中點,CE⊥AB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CE,CB于點P,Q,連接AC,關于下列結論:①∠BAD=∠ABC;②GP=GD;③點P是△ACQ的外心;④AC2=CQCB,其中結論正確的是______.
【答案】②③④.
【解析】
由于弧AC與弧BD不一定相等,根據(jù)圓周角定理可知①錯誤,選項①錯誤;連接BD,由GD為圓O的切線,根據(jù)弦切角等于夾弧所對的圓周角得到∠GDP=∠ABD,再由AB為圓的直徑,根據(jù)直徑所對的圓周角為直角得到∠ACB為直角,由CE垂直于AB,得到∠AFP為直角,再由一對公共角,得到三角形APF與三角形ABD相似,根據(jù)相似三角形的對應角相等可得出∠APF等于∠ABD,根據(jù)等量代換及對頂角相等可得出∠GPD=∠GDP,利用等角對等邊可得出GP=GD,選項②正確;由直徑AB垂直于弦CE,利用垂徑定理得到A為弧CE的中點,得到兩條弧相等,再由C為弧AD的中點,得到兩條弧相等,等量代換得到三條弧相等,根據(jù)等弧所對的圓周角相等可得出∠CAP=∠ACP,利用等角對等邊可得出AP=CP,又AB為直徑得到∠ACQ為直角,利用等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P為直角三角形ACQ斜邊上的中點,即為直角三角形ACQ的外心,選項③正確;利用等弧所對的圓周角相等得到一對角相等,再由一對公共角相等,得到三角形ACQ與三角形ABC相似,根據(jù)相似得比例得到AC2=CQCB,選項④正確.
解:∵在⊙O中,AB是直徑,點D是⊙O上一點,點C是弧AD的中點,
∴弧AC=弧CD≠弧BD,
∴∠BAD≠∠ABC,選項①錯誤;
連接BD,如圖所示:
∵GD為圓O的切線,
∴∠GDP=∠ABD,
又AB為圓O的直徑,∴∠ADB=90°,
∵CE⊥AB,∴∠AFP=90°,
∴∠ADB=∠AFP,又∠PAF=∠BAD,
∴△APF∽△ABD,
∴∠ABD=∠APF,又∠APF=∠GPD,
∴∠GDP=∠GPD,
∴GP=GD,選項②正確;
∵直徑AB⊥CE,
∴A為弧CE的中點,即弧AE=弧AC,
又C為弧AD的中點,
∴弧AC=弧CD,
∴弧AE=弧CD,
∴∠CAP=∠ACP,
∴AP=CP,
又AB為圓O的直徑,∴∠ACQ=90°,
∴∠PCQ=∠PQC,
∴PC=PQ,
∴AP=PQ,即P為Rt△ACQ斜邊AQ的中點,
∴P為Rt△ACQ的外心,選項③正確;
連接CD,如圖所示:
∵弧AC=弧CD,
∴∠B=∠CAD,
又∵∠ACQ=∠BCA,
∴△ACQ∽△BCA,
∴=,即AC2=CQCB,選項④正確,
綜上可知正確的選項序號有②③④,
故答案為:②③④.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,P為CD的中點,連結AP,過點B作BE⊥AP于點E,延長CE交AD于點F,過點C作CH⊥BE于點G,交AB于點H,連接HF.下列結論正確的是( 。
A. CE= B. EF= C. cos∠CEP= D. HF2=EFCF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為等邊三角形,O為BC的中點,作⊙O與AC相切于點D.
(1)求證:AB與⊙O相切;
(2)延長AC到E,使得CE=AC,連接BE交⊙O與點F、M,若AB=4,求FM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知銳角的余弦值為,點在射線上,,點在的內部,且,.過點的直線分別交射線、射線于點、.點在線段上(點不與點重合),且.
(1)如圖1,當時,求的長;
(2)如圖2,當點在線段上時,設,,求關于的函數(shù)解析式并寫出函數(shù)定義域;
(3)聯(lián)結,當與相似時,請直接寫出的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小華設計了一個探索杠桿平衡的實驗:在一根勻質的木桿中點O左側固定位置B處懸掛重物A,在中點O的右側用一個彈簧秤向下拉木桿,改變彈簧秤與點O的距離x(單位:厘米),觀察彈簧秤的示數(shù)y(單位:牛)的變化情況,實驗數(shù)據(jù)記錄如下:
x(單位:厘米) | … | 10 | 15 | 20 | 25 | 30 | … |
y(單位:牛) | … | 30 | 20 | 15 | 12 | 10 | … |
(1)請寫出一個符合表格中數(shù)據(jù)x關于y的函數(shù)關系;
(2)當彈簧秤的示數(shù)為30牛時,彈簧秤與點O的距離是多少厘米?隨著彈簧秤與O點的距離不斷減小,彈簧秤的示數(shù)將發(fā)生怎樣的變化?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】校體育組為了解全校學生“最喜歡的一項球類項目”,隨機抽取了部分學生進行調查,下面是根據(jù)調查結果繪制的不完整的統(tǒng)計圖:
請你根據(jù)統(tǒng)計圖回答下列問題:
(1)喜歡乒乓球的學生所占的百分比是多少?并請補全條形統(tǒng)計圖;
(2)請你估計全校500名學生中最喜歡“排球”項目的有多少名?
(3)在扇形統(tǒng)計圖中,“籃球”部分所對應的圓心角是多少度?
(4)籃球教練在制定訓練計劃前,將從最喜歡籃球項目的甲、乙、丙、丁四名同學中任選兩人進行個別座談,請用列表法或樹狀圖法求抽取的兩人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠DAB=60°,AE分別交BC、BD于點E、F,若CE=2,連接CF.以下結論:①∠BAF=∠BCF; ②點E到AB的距離是2; ③S△CDF:S△BEF=9:4; ④tan∠DCF=3/7. 其中正確的有()
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,函數(shù)y=的圖像與x、y軸分別交于點A、B.以AB為直徑作M.
(1)求AB的長;
(2)點D是M上任意一點,且點D在直線AB上方,過點D作DH⊥AB,垂足為H,連接BD.
①當△BDH中有一個角等于BAO兩倍時,求點D的坐標;
②當DBH=45°時,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】油井A位于油庫P南偏東75°方向,主輸油管道AP=12km,一新建油井B位于點P的北偏東75°方向,且位于點A的北偏西15°方向.
(1)求∠PBA;
(2)求A,B間的距離;
(3)要在AP上選擇一個支管道連接點C,使從點B到點C處的支輸油管道最短,求這時BC的長.(結果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com