【題目】已知:點(diǎn)PABC內(nèi),且滿足∠APB=APC(如下圖),∠APB+BAC=180°,

1)求證:PAB∽△PCA

2)如下圖,如果∠APB=120°,∠ABC=90°的值;

3)如圖,當(dāng)∠BAC=45°,ABC為等腰三角形時(shí),求tanPBC的值.

【答案】1)見解析;(24;(321

【解析】

1)由已知和等量代換得∠PBA=PAC,再根據(jù)∠APB=APC可證明△PAB∽△PCA

2)由△PAB∽△PCA可得,通過變形得到,再利用∠APB=120°,∠ABC=90°求出,則可得出的值.

3)當(dāng)∠BAC=45°時(shí),可以推出tanBPC=,ABC為等腰三角形,分BA=BCCA=CB ,AB=AC三種情況,分情況討論即可.

1)∵∠APB+PBA+PBA=180°,∠APB+BAC=180°

∴∠BAC=PAB+PBA

∴∠PBA=PAC

∵∠APB=APC

∴△PAB∽△PCA

2

∵△PAB∽△PCA

∵∠APB=120°

∴∠BAC=60°

∵∠ABC=90°

3

∵∠BAC=45°

∴∠APB=135°=APC

∴∠BPC=90°

tanBPC=

∵∠BAC=45°,ABC是等腰三角形

當(dāng)BA=BC時(shí),由勾股定理可得 ,tanBPC=

當(dāng)CA=CB時(shí),由勾股定理可得 ,tanBPC=

當(dāng)AB=AC 時(shí),tanBPC=

綜上所述,tanPBC=21

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)如圖1,在Rt△ABC中,∠B=90°,BC=2AB=8,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),連接DE. △EDC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α.

1)問題發(fā)現(xiàn)

當(dāng)時(shí),;當(dāng)時(shí),

2)拓展探究

試判斷:當(dāng)0°≤α360°時(shí),的大小有無變化?請(qǐng)僅就圖2的情況給出證明.

3)問題解決

當(dāng)△EDC旋轉(zhuǎn)至A、D、E三點(diǎn)共線時(shí),直接寫出線段BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+cx軸交于B,C兩點(diǎn),與y軸交于點(diǎn)A,直線y=﹣x+2經(jīng)過A,C兩點(diǎn),拋物線的對(duì)稱軸與x軸交于點(diǎn)D,直線MN與對(duì)稱軸交于點(diǎn)G,與拋物線交于M,N兩點(diǎn)(點(diǎn)N在對(duì)稱軸右側(cè)),且MNx軸,MN7

1)求此拋物線的解析式.

2)求點(diǎn)N的坐標(biāo).

3)過點(diǎn)A的直線與拋物線交于點(diǎn)F,當(dāng)tanFAC時(shí),求點(diǎn)F的坐標(biāo).

4)過點(diǎn)D作直線AC的垂線,交AC于點(diǎn)H,交y軸于點(diǎn)K,連接CN,△AHK沿射線AC以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng),移動(dòng)過程中△AHK與四邊形DGNC產(chǎn)生重疊,設(shè)重疊面積為S,移動(dòng)時(shí)間為t0t),請(qǐng)直接寫出St的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)今,越來越多的青少年在觀看影片《流浪地球》后,更加喜歡同名科幻小說,該小說銷量也急劇上升.書店為滿足廣大顧客需求,訂購(gòu)該科幻小說若干本,每本進(jìn)價(jià)為20元.根據(jù)以往經(jīng)驗(yàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量是250本;銷售單價(jià)每上漲1元,每天的銷售量就減少10本,書店要求每本書的利潤(rùn)不低于10元且不高于18元.

1)直接寫出書店銷售該科幻小說時(shí)每天的銷售量(本)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式及自變量的取值范圍.

2)書店決定每銷售1本該科幻小說,就捐贈(zèng)元給困難職工,每天扣除捐贈(zèng)后可獲得最大利潤(rùn)為1960元,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某小區(qū)有甲、乙兩座樓房,樓間距BC50米,在乙樓頂部A點(diǎn)測(cè)得甲樓頂部D點(diǎn)的仰角為37°,在乙樓底部B點(diǎn)測(cè)得甲樓頂部D點(diǎn)的仰角為60°,則甲、乙兩樓的高度分別為多少?(結(jié)果精確到1米,sin37°≈0.60,cos37°≈0.80tan37°≈0.75,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市努力改善空氣質(zhì)量,近年來空氣質(zhì)量明顯好轉(zhuǎn),根據(jù)該市環(huán)境保護(hù)局公布的2010﹣2014這五年各年全年空氣質(zhì)量?jī)?yōu)良的天數(shù)如表所示,根據(jù)表中信息回答:

2010

2011

2012

2013

2014

234

233

245

247

256

(1)這五年的全年空氣質(zhì)量?jī)?yōu)良天數(shù)的中位數(shù)是________,平均數(shù)是________

(2)這五年的全年空氣質(zhì)量?jī)?yōu)良天數(shù)與它前一年相比增加最多的是________年(填寫年份);

(3)求這五年的全年空氣質(zhì)量?jī)?yōu)良天數(shù)的方差________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與x軸交于點(diǎn)A(﹣1,0),E30)兩點(diǎn),y軸交于點(diǎn)B0,3).

1)求拋物線的解析式;

2)設(shè)拋物線的頂點(diǎn)為D,求四邊形AEDB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1)、B(4,2)、C(3,4).

(1)請(qǐng)畫出△ABC向左平移5個(gè)單位長(zhǎng)度后得到的△A1B1C1

(2)請(qǐng)畫出△ABC關(guān)于x軸對(duì)稱的△A2B2C2三個(gè)頂點(diǎn)A2、B2、C2的坐標(biāo);

(3)x軸上求作一點(diǎn)P,使△PAB的周長(zhǎng)最小,請(qǐng)畫出△PAB,并直接寫出P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求圖象為下列拋物線的二次函數(shù)的表達(dá)式;

1)拋物線yax2+bx+2經(jīng)過點(diǎn)(﹣26)、(22).

2)拋物線的頂點(diǎn)坐標(biāo)為(3,﹣5),且拋物線經(jīng)過點(diǎn)(01).

查看答案和解析>>

同步練習(xí)冊(cè)答案