【題目】如圖,ABC,C=90°,以點C為圓心,BC為半徑的圓交AB于點D,AC于點E.

(1)A=25°,的度數(shù);

(2)BC=9,AC=12,BD的長.

【答案】(1)的度數(shù)是50°;(2) BD=.

【解析】

(1)求出∠B的度數(shù),求出∠B所對的弧的度數(shù),即可得出答案;

(2)根據(jù)勾股定理求出AB,根據(jù)割線定理得出比例式,即可得出答案.

(1)延長BC交O于點N,

ABC中,∠C=90°,∠A=25°,∴∠B=65°,

∴∠B所對的弧BDN的度數(shù)是130°,

的度數(shù)是180°-130°=50°.

(2)延長AC交O于點M,

在RtBCA中,由勾股定理得AB==15,

∵BC=9,AC=12,

∴CM=CE=BC=9,AM=AC+CM=21,AE=AC-CE=3,

由割線定理得AD×AB=AE×AM,

∴(15-BD)×15=21×3,解得BD=.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某自行車廠一周計劃生產(chǎn)1400輛自行車,平均每天生產(chǎn)200輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計劃量相比有出入.下表是某周的生產(chǎn)情況(超產(chǎn)為正、減產(chǎn)為負):

星期

增減

1)根據(jù)記錄可知前三天共生產(chǎn)______輛.

2)產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)_______輛.

3)該廠實行每周計件工資制,每生產(chǎn)一輛車可得60元,若超額完成任務(wù),則超過部分每輛另獎15元;少生產(chǎn)一輛扣15元,那么該廠工人這一周的工資總額是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實驗數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5時內(nèi)其血液中酒精含量y(毫克/百毫升)與時間(時)的關(guān)系可近似地用二次函數(shù)刻畫;1.5時后(包括1.5時)y與x可近似地用反比例函數(shù)(k>0)刻畫(如圖所示).

(1)根據(jù)上述數(shù)學模型計算:

喝酒后幾時血液中的酒精含量達到最大值?最大值為多少?

=5時,y=45.求k的值.

(2)按國家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學模型,假設(shè)某駕駛員晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BE、CF分別是鈍角△ABC(∠A>90°)的高,在BE上截取BPAC,在CF的延長線截取CQAB,連結(jié)APAQ,請推測APAQ的數(shù)量和位置關(guān)系并加以證明。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB是半圓O的直徑,點C是半圓O上的動點,點D是線段AB延長線上的動點,在運動過程中,保持CD=OA

1)當直線CD與半圓O相切時(如圖),求∠ODC的度數(shù);

2)當直線CD與半圓O相交時(如圖),設(shè)另一交點為E,連接AE,若AE∥OC,

①AEOD的大小有什么關(guān)系?為什么?

∠ODC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,EAB邊的中點,沿EC對折矩形ABCD,使B點落在點P處,折痕為EC,連結(jié)AP并延長APCDF點,連結(jié)CP并延長CPADQ點.給出以下結(jié)論:

①四邊形AECF為平行四邊形;

②∠PBA=APQ;

③△FPC為等腰三角形;

④△APB≌△EPC.

其中正確結(jié)論的個數(shù)為(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=3,點E,F(xiàn)分別在CD,AD上,CE=DF,BE,CF相交于點G.若圖中陰影部分的面積與正方形ABCD的面積之比為2:3,則BCG的周長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知函數(shù)y=ax2(a≠0)的圖象上的點D,C與x軸上的點A(-5,0)和B(3,0)構(gòu)成ABCD,DC與y軸的交點為E(0,6),試求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊的邊長為,是邊上的動點,交邊于點,在邊上取一點,使,連接

(1)請直接寫出圖中與線段相等的兩條線段;(不再另外添加輔助線)

(2)探究:當點在什么位置時,四邊形是平行四邊形?并判斷四邊形是什么特殊的平行四邊形,請說明理由;

(3)在(2)的條件下,以點為圓心,為半徑作圓,根據(jù)與平行四邊形四條邊交點的總個數(shù),求相應的的取值范圍.

查看答案和解析>>

同步練習冊答案