【題目】阿靜家在新建的樓房旁圍成一個矩形花圃,花圃的一邊利用20米長的院墻,另三邊用總長為32米的離笆恰好圍成.如圖,設(shè)AB邊的長為x米,矩形ABCD的面積為S平方米.

1)求Sx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

2)當(dāng)x為何值時,S有最大值?并求出最大值.

【答案】1S=﹣2x2+32x6x16);(2)當(dāng)x8時,S有最大值,最大值是128平方米

【解析】

1)根據(jù)題意可以寫出Sx之間的函數(shù)關(guān)系式,并求出x的取值范圍;

2)將(1)中的函數(shù)關(guān)系式化為頂點(diǎn)式,從而可以解答本題.

解:(1)由題意可得,Sx322x)=﹣2x2+32x,

,

6≤x16,

Sx之間的函數(shù)關(guān)系式是S=﹣2x2+32x6≤x16);

2)∵S=﹣2x2+32x=﹣2x82+128,

∴當(dāng)x8時,S有最大值,最大值是128平方米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點(diǎn),,三點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對稱,點(diǎn)是線段上的一個動點(diǎn),設(shè)點(diǎn)的坐標(biāo)為,過點(diǎn)軸的垂線交拋物線于點(diǎn),交直線于點(diǎn).

(1)求該拋物線所表示的二次函數(shù)的表達(dá)式;

(2)在點(diǎn)運(yùn)動過程中,是否存在點(diǎn),使得以為直徑的圓與軸相切?若存在,求出的值;若不存在,請說明理由;

(3)連接,繞平面內(nèi)某點(diǎn)順時針旋轉(zhuǎn),得到,點(diǎn)、、的對應(yīng)點(diǎn)分別是點(diǎn)、.的兩個頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“和諧點(diǎn)”, 那么我們就稱這樣的點(diǎn)為“和諧點(diǎn)”,請直接寫出“和諧點(diǎn)”的個數(shù)和點(diǎn)A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了測量出樓房AC的高度,從距離樓底C處米的點(diǎn)D(點(diǎn)D與樓底C在同一水平面上)出發(fā),沿斜面坡度為i=1:的斜坡DB前進(jìn)30米到達(dá)點(diǎn)B,在點(diǎn)B處測得樓頂A的仰角為53°,求樓房AC的高度(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈,計算結(jié)果用根號表示,不取近似值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的口袋中裝有4個完全相同的小球,分別標(biāo)有數(shù)字1、23、4,另有一個可以自由旋轉(zhuǎn)的圓盤.被分成面積相等的3個扇形區(qū),分別標(biāo)有數(shù)字1、23(如圖所示).小穎和小亮想通過游戲來決定誰代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個小球,另一個人轉(zhuǎn)動圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.

1)用樹狀圖或列表法求出小穎參加比賽的概率;

2)你認(rèn)為該游戲公平嗎?請說明理由;若不公平,請修改該游戲規(guī)則,使游戲公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小輝和小聰兩人在玩轉(zhuǎn)盤游戲時,把一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤A3等份的扇形區(qū)域,把轉(zhuǎn)盤B2等份的扇形區(qū)域,并在每一小區(qū)內(nèi)標(biāo)上數(shù)字(如圖所示),游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)兩轉(zhuǎn)盤停止后,若指針?biāo)竷蓚區(qū)域的數(shù)字之和為2的倍數(shù)時,則小輝獲勝;若指針?biāo)竷蓚區(qū)域的數(shù)字之和為3的倍數(shù)時,則小聰獲勝;如果指針落在分割線上,則需重新轉(zhuǎn)動轉(zhuǎn)盤.在這個游戲中,小輝和小聰兩人獲勝的概率分別為多少?該游戲規(guī)則對雙方公平嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是矩形ABCD內(nèi)一點(diǎn),連結(jié)P與矩形ABCD各頂點(diǎn),矩形EFGH各頂點(diǎn)分別在邊AP,BPCP,DP上,已知AE2EP,EFAB,圖中兩塊陰影部分的面積和為S.則矩形ABCD的面積為( 。

A.4SB.6SC.12SD.18S

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD中,AB=6,AD=8將矩形ABCD沿直線MN翻折后,點(diǎn)B恰好落在邊AD上的點(diǎn)E處,如果AE=2AM,那么CN的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△中,∠,點(diǎn)邊上一點(diǎn),以為直徑的⊙與邊相切于點(diǎn),與邊交于點(diǎn),過點(diǎn)于點(diǎn),連接

(1)求證:;

(2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一張透明的平行四邊形膠片沿對角線剪開,得到圖①中的兩張三角形膠片.將這兩張三角形膠片的頂點(diǎn)B與頂點(diǎn)E重合,把繞點(diǎn)B順時針方向旋轉(zhuǎn),這時ACDF相交于點(diǎn)O.

(1)當(dāng)旋轉(zhuǎn)至如圖②位置,點(diǎn)B(E),C,D在同一直線上時,∠AFD∠DCA的數(shù)量關(guān)系是

(2)當(dāng)繼續(xù)旋轉(zhuǎn)至如圖③位置時,(1)中的結(jié)論還成立嗎?請說明理由.

(3)在圖③中,連接BO,AD,探索BOAD之間有怎樣的位置關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊答案