【題目】如圖,AB是⊙O的直徑,,E是OB的中點,連接CE并延長到點F,使EF=CE.連接AF交⊙O于點D,連接BD,BF.
(1)求證:直線BF是⊙O的切線;
(2)若OB=2,求BD的長.
【答案】(1)證明見解析;(2)BD=.
【解析】(1)連接OC,由已知可得∠BOC=90°,根據(jù)SAS證明△OCE≌△BFE,根據(jù)全等三角形的對應(yīng)角相等可得∠OBF=∠COE=90°,繼而可證明直線BF是⊙O的切線;
(2),由(1)的全等可知BF=OC=2,利用勾股定理求出AF的長,然后由S△ABF=,即可求出BD=.
(1)連接OC,
∵AB是⊙O的直徑,,∴∠BOC=90°,
∵E是OB的中點,∴OE=BE,
在△OCE和△BFE中,
,
∴△OCE≌△BFE(SAS),
∴∠OBF=∠COE=90°,
∴直線BF是⊙O的切線;
(2)∵OB=OC=2,由(1)得:△OCE≌△BFE,
∴BF=OC=2,
∴AF=,
∴S△ABF=,
即4×2=2BD,
∴BD=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠準(zhǔn)備購買A、B兩種零件,已知A種零件的單價比B種零件的單價多30元,而用900元購買A種零件的數(shù)量和用600元購買B種零件的數(shù)量相等.
(1)求A、B兩種零件的單價;
(2)根據(jù)需要,工廠準(zhǔn)備購買A、B兩種零件共200件,工廠購買兩種零件的總費用不超過14700元,求工廠最多購買A種零件多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=60°,∠C=45°,點D,E分別為邊AB,AC上的點,且DE∥BC,BD=DE=2,CE=,BC=.動點P從點B出發(fā),以每秒1個單位長度的速度沿B→D→E→C勻速運動,運動到點C時停止.過點P作PQ⊥BC于點Q,設(shè)△BPQ的面積為S,點P的運動時間為t,則S關(guān)于t的函數(shù)圖象大致為( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABOC在平面直角坐標(biāo)系中,A、B的坐標(biāo)分別為(﹣3,3),(﹣4,0).則過C的雙曲線表達(dá)式為:_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】T1、T2分別為⊙O的內(nèi)接正六邊形和外切正六邊形.設(shè)T1的半徑r,T1、T2的邊長分別為a、b,T1、T2的面積分別為S1、S2.下列結(jié)論:①r:a=1:1;②r:b=;③a:b=1:;④S1:S2=3:4.其中正確的有_____.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,若拋物線l:y=﹣x2+bx+c(b,c為常數(shù))的頂點D位于直線y=﹣2與x軸之間的區(qū)域(不包括直線y=﹣2和x軸),則l與直線y=﹣1交點的個數(shù)是( 。
A. 0個B. 1個或2個
C. 0個、1個或2個D. 只有1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=3,點N為BC邊上的一點,且BN=n(n>0),動點P從點A出發(fā),以每秒1個單位長的速度沿AB邊向點B運動,連接NP,作射線PM⊥NP交AD于點M,設(shè)點P運動的時間是t秒(t>0).
(1)當(dāng)點M與點A重合時,t等于多少秒,當(dāng)點M與點D重合時,n等于多少(用含字母t的代數(shù)式表示)
(2)若n=2,則
①在點P運動過程中,點M是否可以到達(dá)線段AD的延長線上?通過計算說明理由;
②連接ND,當(dāng)t為何值時,ND∥PM?
(3)過點N作NK∥AB,交AD于點K,若在點P運動過程中,點K與點M不會重合,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AC為對角線,點P為BC邊上一動點,連接AP,過點B作BQ⊥AP,垂足為Q,連接CQ.
⑴證明:△ABP∽△BQP;
⑵當(dāng)點P為BC的中點時,若∠BAC=37°,求∠CQP的度數(shù);
⑶當(dāng)點P運動到與點C重合時,延長BQ交CD于點F,若AQ=AD,則等于多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B為定點,定直線l//AB,P是l上一動點.點M,N分別為PA,PB的中點,對于下列各值:
①線段MN的長;
②△PAB的周長;
③△PMN的面積;
④直線MN,AB之間的距離;
⑤∠APB的大。
其中會隨點P的移動而變化的是( )
A. ②③ B. ②⑤ C. ①③④ D. ④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com