到一個(gè)三角形三條邊所在直線(xiàn)等距離的點(diǎn)有________個(gè).

4
分析:要求滿(mǎn)足條件的點(diǎn)的個(gè)數(shù),要結(jié)合根據(jù)角平分線(xiàn)的性質(zhì)找,但要注意包括三個(gè)外角,共4個(gè)點(diǎn).
解答:解:如圖,∵HD平分∠EHF
∴DE=DF
∵JD平分∠GJF
所以DG=DF,故DE=DG
同理,在1號(hào)、2號(hào)、3號(hào)區(qū)域內(nèi)也可各找到到一個(gè)三角形三條邊所在直線(xiàn)等距離的點(diǎn),所以共有四個(gè)點(diǎn).
到一個(gè)三角形三條邊所在直線(xiàn)等距離的點(diǎn)有4個(gè).
點(diǎn)評(píng):本題考查了角平分線(xiàn)的性質(zhì);根據(jù)角平分線(xiàn)的性質(zhì)解答,本題值得注意的是思考要全面,不能漏掉外角的情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料并解答問(wèn)題:
我國(guó)是最早了解和應(yīng)用勾股定理的國(guó)家之一,古代印度、希臘、阿拉伯等許多國(guó)家也都很重視對(duì)勾股定理的研究和應(yīng)用,古希臘數(shù)學(xué)家畢達(dá)哥拉斯首先證明了勾股定理,在西方,勾股定理又稱(chēng)為“畢達(dá)哥拉斯定理”.
關(guān)于勾股定理的研究還有一個(gè)很重要的內(nèi)容是勾股數(shù)組,在《幾何》課本中我們已經(jīng)了解到,“能夠成為直角三角形三條邊的三個(gè)正整數(shù)稱(chēng)為勾股數(shù)”,以下是畢達(dá)哥拉斯等學(xué)派研究出的確定勾股數(shù)組的兩種方法:
方法1:若m為奇數(shù)(m≥3),則a=m,b=
1
2
(m2-1)和c=
1
2
(m2+1)是勾股數(shù).
方法2:若任取兩個(gè)正整數(shù)m和n(m>n),則a=m2-n2,b=2mn,c=m2+n2是勾股數(shù).
(1)在以上兩種方法中任選一種,證明以a,b,c為邊長(zhǎng)的△ABC是直角三角形;
(2)請(qǐng)根據(jù)方法1和方法2按規(guī)律填寫(xiě)下列表格:
精英家教網(wǎng)
(3)某園林管理處要在一塊綠地上植樹(shù),使之構(gòu)成如下圖所示的圖案景觀(guān),該圖案由四個(gè)全等的直角三角形組成,要求每個(gè)三角形頂點(diǎn)處都植一棵樹(shù),各邊上相鄰兩棵樹(shù)之間的距離均為1米,如果每個(gè)三角形最短邊上都植6棵樹(shù),且每個(gè)三角形的各邊長(zhǎng)之比為5:12:13,那么這四個(gè)直角三角形的邊長(zhǎng)共需植樹(shù)
 
棵.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、下列命題中假命題的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法:
①平分弦的直徑垂直于弦   
②三點(diǎn)確定一個(gè)圓,
③相等的圓心角所對(duì)的弧相等 
④垂直于半徑的直線(xiàn)是圓的切線(xiàn)  
⑤三角形的內(nèi)心到三條邊的距離相等
其中不正確的有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖北省鄂州市九年級(jí)上學(xué)期10月月考數(shù)學(xué)試卷(解析版) 題型:選擇題

下列說(shuō)法①平分弦的直徑垂直于弦;②三點(diǎn)確定一個(gè)圓;③相等的圓心角所對(duì)的弧相等;④垂直于半徑的直線(xiàn)是圓的切線(xiàn);⑤三角形的內(nèi)心到三條邊的距離相等。其中不正確的有( )個(gè)。

A.1    B.2   C.3   D.4

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

我國(guó)是最早了解和應(yīng)用勾股定理的國(guó)家之一,古代印度、希臘、阿拉伯等許多國(guó)家也都很重視對(duì)勾股定理的研究和應(yīng)用,古希臘數(shù)學(xué)家畢達(dá)哥拉斯首先證明了勾股定理,在西方,勾股定理又稱(chēng)為“畢達(dá)哥拉斯定理”.
關(guān)于勾股定理的研究還有一個(gè)很重要的內(nèi)容是勾股數(shù)組,在《幾何》課本中我們已經(jīng)了解到,“能夠成為直角三角形三條邊的三個(gè)正整數(shù)稱(chēng)為勾股數(shù)”,以下是畢達(dá)哥拉斯等學(xué)派研究出的確定勾股數(shù)組的兩種方法:
方法1:若m為奇數(shù)(m≥3),則a=m,b=數(shù)學(xué)公式(m2-1)和c=數(shù)學(xué)公式(m2+1)是勾股數(shù).
方法2:若任取兩個(gè)正整數(shù)m和n(m>n),則a=m2-n2,b=2mn,c=m2+n2是勾股數(shù).
(1)在以上兩種方法中任選一種,證明以a,b,c為邊長(zhǎng)的△ABC是直角三角形;
(2)請(qǐng)根據(jù)方法1和方法2按規(guī)律填寫(xiě)下列表格:

(3)某園林管理處要在一塊綠地上植樹(shù),使之構(gòu)成如下圖所示的圖案景觀(guān),該圖案由四個(gè)全等的直角三角形組成,要求每個(gè)三角形頂點(diǎn)處都植一棵樹(shù),各邊上相鄰兩棵樹(shù)之間的距離均為1米,如果每個(gè)三角形最短邊上都植6棵樹(shù),且每個(gè)三角形的各邊長(zhǎng)之比為5:12:13,那么這四個(gè)直角三角形的邊長(zhǎng)共需植樹(shù)______棵.

查看答案和解析>>

同步練習(xí)冊(cè)答案