【題目】已知拋物線y=ax2﹣4ax+c經(jīng)過(guò)點(diǎn)A(0,2),頂點(diǎn)B的縱坐標(biāo)為3.將直線AB向下平移,與x軸、y軸分別交于點(diǎn)C、D,與拋物線的一個(gè)交點(diǎn)為P,若D是線段CP的中點(diǎn),則點(diǎn)P的坐標(biāo)為________.
【答案】(,)
【解析】
試題首先求出頂點(diǎn)坐標(biāo),利用待定的系數(shù)法求得物線的解析式;求出直線AB,進(jìn)一步得到直線PC的解析式,由此聯(lián)立一元二次方程求得結(jié)果.
試題解析:拋物線y=ax2-4ax+b的對(duì)稱軸是x=,頂點(diǎn)坐標(biāo)為B(2,3),且經(jīng)過(guò)A(0,2),
代入函數(shù)解析式得,
解得,
所以函數(shù)解析式為y=x2+x+2;
如圖,
設(shè)P點(diǎn)坐標(biāo)為(x,x2+x+2),過(guò)點(diǎn)P作PQ⊥x軸,垂足為Q,可得到△COD∽△CQP,
,又因?yàn)?/span>,所以
因此D點(diǎn)坐標(biāo)為(0,x2+x+1),
經(jīng)過(guò)A、B兩點(diǎn)直線AB的解析式為y=x+2,
因此直線CP的解析式為y=x+(-x2+x+1)=-x2+x+1,與拋物線聯(lián)立方程得,
-x2+x+2=-x2+x+1,解得x=,(負(fù)舍去)
代入拋物線解析式可得y=,
因此
考點(diǎn): 二次函數(shù)綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為 1 的小正方形組成的網(wǎng)格中,有如圖 所示的 A. B 兩點(diǎn),在格點(diǎn)中任 意放置點(diǎn) C,恰好能使△ABC 的面積為 1,則這樣的 C 點(diǎn)有 ( )個(gè)
A. 5 個(gè)B. 6 個(gè)C. 7 個(gè)D. 8 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為正方形ABCD對(duì)角線的交點(diǎn),E為AB邊上一點(diǎn),F為BC邊上一點(diǎn),△EBF的周長(zhǎng)等于BC的長(zhǎng).
(1)若AB=12,BE=3,求EF的長(zhǎng);
(2)求∠EOF的度數(shù);
(3)若OE=OF,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知E是正方形ABCD的邊CD上一點(diǎn),BF⊥AE于F.
(1)求證:△ABF∽△EAD;
(2)當(dāng)AD=2,=時(shí),求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知函數(shù)y=x+1和y=ax+3的圖象交于點(diǎn)P,點(diǎn)P的橫坐標(biāo)為1,
(1)關(guān)于x,y的方程組 的解是 ;
(2)a= ;
(3)求出函數(shù)y=x+1和y=ax+3的圖象與x軸圍成的幾何圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)中東部地區(qū)霧霾天氣趨于嚴(yán)重,環(huán)境治理已刻不容緩.我市某電器商場(chǎng)根據(jù)民眾健康需要,代理銷(xiāo)售某種家用空氣凈化器,其進(jìn)價(jià)是200元/臺(tái).經(jīng)過(guò)市場(chǎng)銷(xiāo)售后發(fā)現(xiàn):在一個(gè)月內(nèi),當(dāng)售價(jià)是400元/臺(tái)時(shí),可售出200臺(tái),且售價(jià)每降低10元,就可多售出50臺(tái).若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于300元/臺(tái),代理銷(xiāo)售商每月要完成不低于450臺(tái)的銷(xiāo)售任務(wù).
(1)試確定月銷(xiāo)售量y(臺(tái))與售價(jià)x(元/臺(tái))之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;
(2)當(dāng)售價(jià)x(元/臺(tái))定為多少時(shí),商場(chǎng)每月銷(xiāo)售這種空氣凈化器所獲得的利潤(rùn)w(元)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B兩種機(jī)器人都被用來(lái)搬運(yùn)化工原料,A型機(jī)器人比B型機(jī)器人每小時(shí)多搬運(yùn)30kg,A型機(jī)器人搬運(yùn)900kg與B型機(jī)器人搬運(yùn)600kg所用時(shí)間相等,兩種機(jī)器人每小時(shí)分別搬運(yùn)多少化工原料?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小晶和小紅玩擲骰子游戲,每人將一個(gè)各面分別標(biāo)有數(shù)字、、、、、的正方體骰子擲一次,把兩人擲得的點(diǎn)數(shù)相加,并約定:若點(diǎn)數(shù)之和等于,則小晶贏;若點(diǎn)數(shù)之和等于,則小紅贏;若點(diǎn)數(shù)之和是其他數(shù),則兩人不分勝負(fù),那么( )
A. 小晶贏的機(jī)會(huì)大 B. 小紅贏的機(jī)會(huì)大
C. 小晶、小紅贏的機(jī)會(huì)一樣大 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,AC=BC,點(diǎn)D為BC的中點(diǎn),AB =DE,BE∥AC.
(1)求證:△ABC≌△DEB;
(2)連結(jié)AD、AE、CE,如圖2.
①求證:CE是∠ACB的角平分線;
②請(qǐng)判斷△ABE是什么特殊形狀的三角形,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com