分析 延長EO交BC于M,連接FM,先證明△AEO≌△CMO,得AE=CM,EO=OM,根據(jù)線段垂直平分線的性質(zhì)得到FE=FM,在RT△CMF中利用勾股定理即可解決.
解答 證明:延長EO交BC于M,連接FM.
∵四邊形ABCD是正方形,
∴AE∥CM,∠BCD=90°
∴∠EAO=∠MCO,
在△AEO和△CMO中,
$\left\{\begin{array}{l}{∠EAO=∠MCO}\\{∠AOE=∠MOC}\\{AO=OC}\end{array}\right.$,
∴△AEO≌△CMO,
∴EO=OM,AE=MC,
∵∠EOF=90°,
∴FO⊥EM,
∴FE=FM,
在RT△ECF中,∵∠MCF=90°,
∴FM2=CM2+CF2,
∵FM=FE,CM=AE,
∴AE2+CF2=EF2.
點(diǎn)評 本題考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)、線段垂直平分線性質(zhì)、勾股定理等知識,解題的關(guān)鍵是添加輔助線,構(gòu)造全等三角形,屬于中考常考題型.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
用水量h(噸) | 頻數(shù) | 頻率 |
h≤3 | 0 | 0 |
3<h≤6 | 20 | 0.10 |
6<h≤9 | m | 0.20 |
9<h≤12 | 72 | 0.36 |
12<h≤15 | 50 | n |
15<h≤18 | 18 | 0.09 |
18<h | 0 | 0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{\begin{array}{l}{\frac{x}{3}-\frac{y}{2}=1}\\{3x+6y=2}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{3x+2y=7}\\{xy=5}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{2x+y=1}\\{x+z=2}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{\frac{5}{x}+\frac{y}{3}=\frac{1}{2}}\\{x+2y=3}\end{array}\right.$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com