【題目】某網(wǎng)店經(jīng)營一種品牌水果,其進(jìn)價為10/千克,保鮮期為25天,每天銷售量(千克)與銷售單價(/千克)之間的函數(shù)關(guān)系如圖所示.

(1)的函數(shù)關(guān)系式;

(2)當(dāng)該品牌水果定價為多少元時,每天銷售所獲得的利潤最大?

(3)若該網(wǎng)店一次性購進(jìn)該品牌水果3000千克,根據(jù)(2)中每天獲得最大利潤的方式進(jìn)行銷售,發(fā)現(xiàn)在保鮮期內(nèi)不能及時銷售完畢,于是決定在保鮮期的最后5天一次性降價銷售,求最后5天每千克至少降價多少元才能全部售完?

【答案】1;(2)該品牌水果定價為元時,每天銷售所獲得的利潤最大;(3)最后5天每千克至少降價元才能全部售完.

【解析】

1)依據(jù)題意利用待定系數(shù)法可得出每天的銷售量y(千克)與銷售單價x(元/千克)之間函數(shù)關(guān)系:y=-10x+300

2)根據(jù)銷售利潤=銷售量×(售價-進(jìn)價),列出平均每天的銷售利潤w(元)與銷售價x(元/千克)之間的函數(shù)關(guān)系式進(jìn)行求解即可;

3)根據(jù)題意列出不等式進(jìn)行求解即可.

1)設(shè),將代入得:

解得

2)設(shè)每天銷售所獲得的利潤為,

,

0≤25,∴當(dāng)時,取最大值1000,

答:該品牌水果定價為元時,每天銷售所獲得的利潤最大.

3)將代入,得,設(shè)最后5天每千克一次性降價元,

依題意得:,

解得

所以最后5天每千克至少降價元才能全部售完.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x-ax+a-4a-4與x軸相交于點A和點B,與y軸相交于點D(0,8),直線DC平行于x軸,交拋物線于另一點C,動點P以每秒2個單位長度的速度從C點出發(fā),沿CD運動,同時,點Q以每秒1個單位長度的速度從點A出發(fā),沿AB運動,連接PQ、CB,設(shè)點P運動的時間為t秒.

(1)求a的值;(2)當(dāng)四邊形ODPQ為矩形時,求這個矩形的面積;(3)當(dāng)四邊形PQBC的面積等于14時,求t的值.(4)當(dāng)t為何值時,PBQ是等腰三角形?(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y1kx+by2x+a的圖象如圖所示,則下列結(jié)論:k0;a0;當(dāng)x3時,y1y2;當(dāng)y10y20時,﹣ax4.其中正確的個數(shù)是(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A4,0),O為坐標(biāo)原點,P是線段OA上任意一點不含端點OA),過P、O兩點的二次函數(shù)y1和過P、A兩點的二次函數(shù)y2的圖象開口均向下,它們的頂點分別為B、C,射線OB與AC相交于點D當(dāng)OD=AD=3時,這兩個二次函數(shù)的最大值之和等于( )

A B. C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點A,0),B40),C0,2)三點,點D與點C關(guān)于軸對稱,點P軸上的一個動點,設(shè)點P的坐標(biāo)為(0),過點P軸的垂線交拋物線于點Q,交直線BD于點M

1)求該拋物線所表示的二次函數(shù)的表達(dá)式;

2)點P在線段AB上運動的過程中,是否存在點Q,使得以BQ、M為頂點的三角形與△BOD相似?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.

3)已知點F0,),點P軸上運動,試求當(dāng)為何值時,以D、MQ、F為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠C90°,AC6,BC,點EA出發(fā)沿線段AC運動至點C停止,EDAB,EFAC,將ADE沿直線EF翻折得到ADE,設(shè)DExADEABC重合部分的面積為y

1)當(dāng)x   時,D恰好落在BC上?

2)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P為函數(shù)yx0)圖象上一點,過點Px軸、y軸的平行線,分別與函數(shù)yx0)的圖象交于點A、B,則AOB的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°.

(1)用尺規(guī)在邊BC上求作一點P,使PA=PB(不寫作法,保留作圖痕跡);

(2)連接AP,若AP平分∠CAB,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD的一條邊AD8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處.如圖,已知折痕與邊BC交于點O,連結(jié)AP、OP、OA

1)求證:OCP∽△PDA;

2)若tanPAO,求邊AB的長.

查看答案和解析>>

同步練習(xí)冊答案