【題目】如圖,在矩形ABCD中,AB=2,點(diǎn)E在邊AD上,∠ABE=45°,BE=DE,連接BD,點(diǎn)P在線段DE上,過點(diǎn)P作PQ∥BD交BE于點(diǎn)Q,連接QD.設(shè)PD=x,△PQD的面積為y,則能表示y與x函數(shù)關(guān)系的圖象大致是( )
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名學(xué)生參加數(shù)學(xué)素質(zhì)測試(有四項(xiàng)),每項(xiàng)測試成績采用百分制,成績?nèi)绫恚?/span>
學(xué)生 | 數(shù)與代數(shù) | 空間與圖形 | 統(tǒng)計(jì)與概率 | 綜合與實(shí)踐 | 平均成績 | 方差 |
甲 | 87 | 93 | 91 | 85 | 89 | ______ |
乙 | 89 | 96 | 91 | 80 | ______ | ______ |
(1)將表格中空缺的數(shù)據(jù)補(bǔ)充完整,根據(jù)表中信息判斷哪個學(xué)生數(shù)學(xué)綜合素質(zhì)測試成績更穩(wěn)定?請說明理由.
(2)若數(shù)與代數(shù)、空間與圖形、統(tǒng)計(jì)與概率、綜合與實(shí)踐的成績按,計(jì)算哪個學(xué)生數(shù)學(xué)綜合素質(zhì)測試成績更好?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個頂點(diǎn)分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△C;平移△ABC,若A的對應(yīng)點(diǎn)的坐標(biāo)為(0,4),畫出平移后對應(yīng)的△;
(2)若將△C繞某一點(diǎn)旋轉(zhuǎn)可以得到△,請直接寫出旋轉(zhuǎn)中心的坐標(biāo);
(3)在軸上有一點(diǎn)P,使得PA+PB的值最小,請直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
分解因式:
請根據(jù)上述材料回答下列問題:
(1)小云的解題過程從 步出現(xiàn)錯誤的,錯誤的原因是: .
小朵的解題過程從 步出現(xiàn)錯誤的,錯誤的原因是 .
小天的解題過程從 步出現(xiàn)錯誤的,錯誤的原因是: .
(2)若都不正確,請你寫出正確的解題過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在 中 ,平分交 于 ,的兩邊分別與, 相交于,兩點(diǎn),且.
(1)如圖,若, ,, ,.
①寫出 °,的長是 .
②求四邊形的周長.
(2)如圖,過作于,作于,先補(bǔ)全圖乙再證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生小明將線段的垂直平分線上的點(diǎn),稱作線段的“軸點(diǎn)”.其中,當(dāng)時,稱為線段的“長軸點(diǎn)”;當(dāng)時,稱為線段的“短軸點(diǎn)”.
(1)如圖1,點(diǎn),的坐標(biāo)分別為,,則在,,,中線段的“短軸點(diǎn)”是______.
(2)如圖2,點(diǎn)的坐標(biāo)為,點(diǎn)在軸正半軸上,且.
①若為線段的“長軸點(diǎn)”,則點(diǎn)的橫坐標(biāo)的取值范圍是( )
A. B. C. D.或
②點(diǎn)為軸上的動點(diǎn),點(diǎn),在線段的垂直平分線的同側(cè).若為線段的“軸點(diǎn)”,當(dāng)線段與的和最小時,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,AB=AD,BC=CD.
(1)如圖1,請連接AC,BD,求證:AC垂直平分BD;
(2)如圖2,若∠BCD=60°,∠ABC=90°,E,F(xiàn)分別為邊BC,CD上的動點(diǎn),且∠EAF=60°,AE,AF分別與BD交于G,H,求證:△AGH∽△AFE;
(3)如圖3,在(2)的條件下,若 EF⊥CD,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若拋物線L2:y=mx2+nx(m≠0)與拋物線L1:y=ax2+bx(a≠0)的開口大小相同,方向相反,且拋物線L2經(jīng)過L1的頂點(diǎn),我們稱拋物線L2為L1的“友好拋物線”.
(1)若L1的表達(dá)式為y=x2﹣2x,求L1的“友好拋物線”的表達(dá)式;
(2)已知拋物線L2:y=mx2+nx為L1:y=ax2+bx的“友好拋物線”.求證:拋物線L1也是L2的“友好拋物線”;
(3)平面上有點(diǎn)P(1,0),Q(3,0),拋物線L2:y=mx2+nx為L1:y=ax2的“友好拋物線”,且拋物線L2的頂點(diǎn)在第一象限,縱坐標(biāo)為2,當(dāng)拋物線L2與線段PQ沒有公共點(diǎn)時,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com