如圖,已知拋物線y=x2-2x+n與x軸交于不同的兩點A,B,其頂點是C,D是拋物線的對稱軸與x軸的交點.
(1)求實數(shù)n的取值范圍.
(2)求頂點C的坐標;
(3)求線段AB的長;
(4)若直線y=x+1分別交x軸于E,交y軸于F,問△BDC與△EOF是否有可能全等?如果有可能全等請給出證明;如果不可能全等請說明理由.

【答案】分析:(1)已知拋物線與x軸有兩個不同的交點,因此令y=0,得出的方程的△>0,據(jù)此可求出n的取值范圍.
(2)本題用公式法或配方法求解均可.
(3)可求出A、B的橫坐標,進而可得出BA的長(也可用韋達定理求解).
(4)先根據(jù)直線的解析式求出OE,OF的長,然后看這兩個直角三角形的對應邊能否對應相等即可.
解答:解:(1)令y=0,則有:x2-2x+n=0,
依題意有:△=4-4n>0,
∴n<1.
由于拋物線與y軸的交點在y軸正半軸上,
因此0<n<1.

(2)y=x2-2x+n=(x-1)2+n-1,
∴C(1,n-1).

(3)令y=0,x2-2x+n=0,
解得x=1+,x=1-
∴B(1+,0),A(1-,0),
∴AB=2

(4)易知:E(-,0),F(xiàn)(0,1),
∴OE=,OF=1.
由(2)(3)可得BD=,CD=1-n,
①當OE=CD時,1-n=,=≠1,因此BD≠OF,
∴兩三角形不可能全等.
②當OE=BD時,=,1-n=≠1,因此CD≠OF,
∴兩三角形不全等.
綜上所述,△BDC與△EOF不可能全等.
點評:本題主要考查了二次函數(shù)與一元二次方程的關系,全等三角形的判定等知識點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點,與y軸交于點精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點P,使△PAB的面積等于△ABC的面積,若存在,求出點P的坐標,若不存在,請說明理由.
(4)點Q是直線BC上的一個動點,若△QOB為等腰三角形,請寫出此時點Q的坐標.(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應的函數(shù)關系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點,對稱軸是x=-1.
(1)求拋物線對應的函數(shù)關系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設運動的時間為t秒.
①當t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應的函數(shù)關系式;
(2)點P是拋物線對稱軸上一點,若△PAB∽△OBC,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點是(-1,-4),且與x軸交于A、B(1,0)兩點,交y軸于點C;
(1)求此拋物線的解析式;
(2)①當x的取值范圍滿足條件
-2<x<0
-2<x<0
時,y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點,且y1>y2,求實數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點M、交拋物線于點N,求線段MN的長度的最大值;
(4)若以拋物線上的點P為圓心作圓與x軸相切時,正好也與y軸相切,求點P的坐標.

查看答案和解析>>

同步練習冊答案