【題目】如圖,在⊙O的內(nèi)接ABC中,∠CAB90°AB2AC,過點ABC的垂線m交⊙O于另一點D,垂足為H,點E上異于A,B的一個動點,射線BE交直線m于點F,連接AE,連接DEBC于點G

1)求證:FED∽△AEB;

2)若,AC2,連接CE,求AE的長;

3)在點E運動過程中,若BGCG,求tanCBF的值.

【答案】1)見解析;(2;(3

【解析】

1)根據(jù)同角的余角重疊得出∠EAB=∠ECB,然后根據(jù)三角形相似的判定定理判定即可得出結(jié)論;

2)根據(jù)相交弦定理得出DHAH,再根據(jù)勾股定理得,BH,進而求出BECE,進而求出EF,FD,借助(1)的結(jié)論即可得出結(jié)論;

3)根據(jù)平行線分線段成比例得出判,根據(jù)平行線的性質(zhì)得出tanCBFtanCGT,根據(jù)圓周角定理得出tanCEDtanABC,進而得出,再結(jié)合已知條件,即可得出結(jié)論.

解:(1)∵⊙O的內(nèi)接△ABC中,∠CAB90°

BC是⊙O的直徑,

∵點E上異于AB的一個動點,

∴∠CEB90°,

∴∠ECB+EBC90°,

∵過點ABC的垂線m交⊙O于另一點D,垂足為H,

∴∠FHB90°,

∴∠FBH+HFB90°,

∴∠HFB=∠ECB,

∵∠EAB=∠ECB,

∴∠EAB=∠HFB

∵∠FBA=∠ADE,

∴△FED∽△AEB;

2)∵∠CAB90°,AB2AC,AC2,

AB4,

根據(jù)勾股定理得,BC2,

ADBC,BC是⊙O的切線,

DHAH,

RtAHB中,根據(jù)勾股定理得,BH

,BC是⊙O的直徑,

BECE,∠ECB=∠EBC45°

BC2,∠BEC90°

BECE,

∵∠FHB90°,∠EBC45°BH,

FHBHBF,

EFBFBE,FDFH+DH

∵△FED∽△AEB,

,

AE;

3)如圖,過點GGTCET,

∵∠CEB90°

TGEB,

,∠CGT=∠CBF,

tanCBFtanCGT

,

∴∠CED=∠ABC

tanCEDtanABC,

,

,BGCG

ETCT,

,

tanCBFtanCGT

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAB邊的中點,沿EC對折矩形ABCD,使B點落在點P處,折痕為EC,連結(jié)AP并延長APCDF點,連結(jié)CP并延長CPADQ點.給出以下結(jié)論:

①四邊形AECF為平行四邊形;

②∠PBA=APQ;

③△FPC為等腰三角形;

④△APB≌△EPC.

其中正確結(jié)論的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,將拋物線y=﹣x2+bx+c與直線y=﹣x+1相交于點A(01)和點B(3,﹣2),交x軸于點C,頂點為點F,點D是該拋物線上一點.

1)求拋物線的函數(shù)表達(dá)式;

2)如圖1,若點D在直線AB上方的拋物線上,求DAB的面積最大時點D的坐標(biāo);

3)如圖2,若點D在對稱軸左側(cè)的拋物線上,且點E1,t)是射線CF上一點,當(dāng)以C、B、D為頂點的三角形與CAE相似時,求所有滿足條件的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出:如何將一個長為17,寬為1的長方形經(jīng)過剪一剪,拼一拼,形成一個正方形.(下列所有圖中每個小方格的邊長都為1,剪拼過程中材料均無剩余)

問題探究:我們從長為5,寬為1的長方形入手.

1)如圖是一個長為5,寬為1的長方形.把這個長方形剪一剪、拼一拼后形成正方形,則正方形的面積應(yīng)為_____________,設(shè)正方形的邊長為,則_________;

2)我們可以把有些帶根號的無理數(shù)的被開方數(shù)表示成兩個正整數(shù)平方和的形式,比如.類比此,可以將(1)中的表示成_____________

3的幾何意義可以理解為:以長度23為直角邊的直角三角形的斜邊長為;類比此,(2)中的可以理解為以長度__________________為直角邊的直角三角形斜邊的長;

4)剪一剪:由(3)可畫出如圖的分割線,把長方形分成五部分;

5)拼一拼:把圖中五部分拼接得到如圖的正方形;

問題解決:仿照上面的探究方法請把圖中長為17,寬為1的長方形剪一剪,在圖中畫出拼成的正方形.(說明:圖的分割過程不作評分要求,只對圖中畫出的最終結(jié)果評分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的頂點D關(guān)于射線CP的對稱點G落在正方形內(nèi),連接BG并延長交邊AD于點E,交射線CP于點F.連接DF,AF,CG

1)試判斷DFBF的位置關(guān)系,并說明理由;

2)若CF4,DF2,求AE的長;

3)若∠ADF2FAD,求tanFAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,現(xiàn)有下列結(jié)論:①;;.則其中結(jié)論正確的是(

A. ①③ B. ③④ C. ②③ D. ①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,以AC為直徑的O與AB邊交于點D,點E是邊BC的中點.

1、求證:BC 2=BDBA;

2、判斷DE與O位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(模型介紹)

古希臘有一個著名的“將軍飲馬問題”,大致內(nèi)容如下:古希臘一位將軍,每天都要巡查河岸同側(cè)的兩個軍營.他總是先去營,再到河邊飲馬,之后,再巡查營.如圖①,他時常想,怎么走才能使每天走的路程之和最短呢?大數(shù)學(xué)家海倫曾用軸對稱的方法巧妙地解決了這個問題.如圖②,作點關(guān)于直線的對稱點,連結(jié)與直線交于點,連接,則的和最。埬阍谙铝械拈喿x、理解、應(yīng)用的過程中,完成解答.理由:如圖③,在直線上另取任一點,連結(jié),,∵直線是點的對稱軸,點上,

(1)∴___________________,∴____________.在中,∵,∴,即最。

(歸納總結(jié))

在解決上述問題的過程中,我們利用軸對稱變換,把點在直線同側(cè)的問題轉(zhuǎn)化為在直線的兩側(cè),從而可利用“兩點之間線段最短”,即轉(zhuǎn)化為“三角形兩邊之和大于第三邊”的問題加以解決(其中點的交點,即,,三點共線).由此,可拓展為“求定直線上一動點與直線同側(cè)兩定點的距離和的最小值”問題的數(shù)學(xué)模型.

(模型應(yīng)用)

2)如圖④,正方形的邊長為4的中點,上一動點.求的最小值.

解析:解決這個問題,可借助上面的模型,由正方形對稱性可知,點關(guān)于直線對稱,連結(jié)于點,則的最小值就是線段的長度,則的最小值是__________

3)如圖⑤,圓柱形玻璃杯,高為,底面周長為,在杯內(nèi)離杯底的點處有一滴蜂蜜,此時一只螞蟻正好在外壁,離杯上沿與蜂蜜相對的點處,則螞蟻到達(dá)蜂的最短路程為_________

4)如圖⑥,在邊長為2的菱形中,,將沿射線的方向平移,得到,分別連接,,則的最小值為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 邊長為的正方形的對角線交于點 將正方形沿直線折疊, C落在對角線的點處,折痕于點,交于點,則的長為__________

查看答案和解析>>

同步練習(xí)冊答案