【題目】若a2=4,b3=-27,且ab<0,則a-b的值為( )
A. -2 B. ±5 C. 5 D. -5
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在解方程3x-3=2x-3時(shí),小華同學(xué)是這樣解的:
方程兩邊同加上3,得3x-3+3=2x-3+3.(1)
于是3x=2x.
方程兩邊同除以x,得3=2.(2)
所以此方程無解.
小華同學(xué)的解題過程是否正確?如果正確,請(qǐng)指出每一步的理由;如果不正確,請(qǐng)指出錯(cuò)在哪里,并加以改正.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點(diǎn)M是邊BC上一點(diǎn),BM=3,點(diǎn)N是線段MC上的一個(gè)動(dòng)點(diǎn),連接DN,ME,DN與ME相交于點(diǎn)O.若△OMN是直角三角形,則DO的長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(山東泰安,第27題)(10分)如圖,在△ABC中,AB=AC,點(diǎn)P、D分別是BC、AC邊上的點(diǎn),且∠APD=∠B.
(1)求證:ACCD=CPBP;
(2)若AB=10,BC=12,當(dāng)PD∥AB時(shí),求BP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿對(duì)角線BD所在直線折疊,點(diǎn)C落在同一平面內(nèi),落點(diǎn)記為C′,BC′與AD交于點(diǎn)E,若AB=3,BC=4,則DE的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了抓住世博會(huì)商機(jī),某商店決定購進(jìn)A、B兩種世博會(huì)紀(jì)念品,若購進(jìn)A種紀(jì)念品10件,B種紀(jì)念品5件,需要1000元;若購進(jìn)A種紀(jì)念品5件,B種紀(jì)念品3件,需要550元.
(1)求購進(jìn)A、B兩種紀(jì)念品每件各需多少元?
(2)若該商店決定拿出4000元全部用來購進(jìn)這兩種紀(jì)念品,考慮市場(chǎng)需求,要求購進(jìn)A種紀(jì)念品的數(shù)量不少于B種紀(jì)念品數(shù)量的6倍,且不超過B鐘紀(jì)念品數(shù)量的8倍,那么該商店共有幾種進(jìn)貨方案?
(3)若銷售每件A種紀(jì)念品可獲利潤(rùn)20元,每件B種紀(jì)念品可獲利潤(rùn)30元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的一元二次方程mx2﹣3(m﹣1)x+2m﹣3=0(m>3).
(1)求證:方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程的兩個(gè)實(shí)數(shù)根分別為x1 , x2(用含m的代數(shù)式表示);
①求方程的兩個(gè)實(shí)數(shù)根x1 , x2(用含m的代數(shù)式表示);
②若mx1<8﹣4x2 , 直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,射線AB∥CD,∠CAB的角平分線交射線CD于點(diǎn)P1 .
(1)若∠C=50°,求∠AP1C的度數(shù).
(2)如圖1,作∠P1AB的角平分線交射線CD于點(diǎn)P2 . 猜想∠AP1C與∠AP2C的數(shù)量關(guān)系,并說明理由.
(3)如圖2,在(2)的條件下,依次作出∠P2AB的角平分線AP3 . ∠P3AB的角平分線AP4 , ……“∠Pn-1AB的角平分線APn . 其中點(diǎn)P3,P4…,Pn-1Pn都在射線CD上,若∠APnC=x,直接寫出∠C的度數(shù)(用含x的代數(shù)式表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com