【題目】如圖,中,,,將繞A順時(shí)針旋轉(zhuǎn)60°得.
(1)判斷的形狀,并說(shuō)明理由.
(2)求BE的長(zhǎng)度.
【答案】(1)等邊三角形;(2)
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得AB=AD,∠BAD=60°,則可判斷△是等邊三角形;
(2)延長(zhǎng)BE交AB′AD于F,如圖,在Rt△ADE中,利用等腰直角三角形斜邊上的中線性質(zhì)得EF=AB=1,再根據(jù)等邊三角形的性質(zhì)得BD=AD=,然后計(jì)算BF-EF即可.
解:(1)△是等邊三角形.理由如下:
∵繞A順時(shí)針旋轉(zhuǎn)60°得,
∴AB=AD,∠BAD=60°,
∴△ABB′是等邊三角形;
(2)延長(zhǎng)BE交AD于F,如圖,
繞A順時(shí)針旋轉(zhuǎn)60°得,
∴AE=DE=
由(1)有AB=BD,
而DE=BC,
∴BE垂直平分AD;
在Rt△ADE中,AD=AE=2,
∴EF=AB=1,
∵BF為等邊的高,
∴BF=AD=,
∴BE=BF-EF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系網(wǎng)格中,△ABC的頂點(diǎn)都在格點(diǎn)上,點(diǎn)C坐標(biāo)(0,-1).
作出△ABC 關(guān)于原點(diǎn)對(duì)稱的△A1B1C1,并寫出點(diǎn)A1的坐標(biāo);
把△ABC 繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,得△A2B2C2,畫出△A2B2C2,并寫出點(diǎn)A2的坐標(biāo);
(3)直接寫出△A2B2C2的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一塊△ABC余料,已知AB=20cm,BC=7cm,AC=15cm,現(xiàn)將余料裁剪成一個(gè)圓形材料,則該圓的最大面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C、D是⊙O上的兩點(diǎn),且OD∥BC,OD與AC交于點(diǎn)E,連接AD.
(1)求證:AE=CE;
(2)若∠B=60°,求∠CAD的度數(shù);
(3)若AC=4,BC=3,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖拋物線(),下列結(jié)論錯(cuò)誤的是( )
A.a、b同號(hào)B.
C.和時(shí),y值相同D.當(dāng)時(shí),
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程m x2-(m+2)x+2=0(m≠0).
(1)求證:無(wú)論m為何值時(shí),這個(gè)方程總有兩個(gè)實(shí)數(shù)根;
(2)若方程的兩個(gè)實(shí)數(shù)根都是整數(shù),求正整數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖,下列結(jié)論:①abc>0;②2a+b=0;③a-b+c>0;④當(dāng)x≠1時(shí),a+b>ax2+bx:⑤4ac<b2.其中正確的有____________(只填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+6x+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C.直線y=x﹣5經(jīng)過(guò)點(diǎn)B、C.
(1)求拋物線的解析式;
(2)過(guò)點(diǎn)A作AM⊥BC于點(diǎn)M,過(guò)拋物線上一動(dòng)點(diǎn)P(不與點(diǎn)B、C重合),作直線AM的平行線交直線BC于點(diǎn)Q,若以點(diǎn)A、M、P、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線與x軸交于點(diǎn)A,B,AB=2,與y軸交于點(diǎn)C,對(duì)稱軸為直線x=2.
(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)P為對(duì)稱軸上一動(dòng)點(diǎn),求△APC周長(zhǎng)的最小值;
(3)設(shè)D為拋物線上一點(diǎn),E為對(duì)稱軸上一點(diǎn),若以點(diǎn)A,B,D,E為頂點(diǎn)的四邊形是菱形,則點(diǎn)D的坐標(biāo)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com