【題目】已知:在Rt△ABC中,∠ABC=90°,∠C=60°,現(xiàn)將一個(gè)足夠大的直角三角形的頂點(diǎn)P放在斜邊AC上.

(1)設(shè)三角板的兩直角邊分別交邊AB,BC于點(diǎn)M,N.

①當(dāng)點(diǎn)P是AC的中點(diǎn)時(shí),分別作PE⊥AB于點(diǎn)E,PF⊥BC于點(diǎn)F,得到圖1,寫出圖中的一對全等三角形;

②在①的條件下,寫出與△PEM相似的三角形,并直接寫出PN與PM的數(shù)量關(guān)系.

(2)移動(dòng)點(diǎn)P,使AP=2CP,將三角板繞點(diǎn)P旋轉(zhuǎn),設(shè)旋轉(zhuǎn)過程中三角板的兩直角邊分別交邊AB,BC于點(diǎn)M,N(PM不與邊AB垂直,PN不與邊BC垂直);或者三角板的兩直角邊分別交邊AB,BC的延長線于點(diǎn)M,N.

①請?jiān)趥溆脠D中畫出圖形,判斷PM與PN的數(shù)量關(guān)系,并選擇其中一種圖形證明你的結(jié)論;

②在①的條件下,當(dāng)△PCN是等腰三角形時(shí),若BC=3cm,則線段BN的長是

【答案】(1)①△AEP≌△PFC,理由見解析;②△PFN∽△PEM,PN=PM;(2)①PM=2PN,②1cm或5cm.

【解析】

試題分析:(1)①求出∠AEP=∠B=∠PFC=90°,∠APE=∠C=60°,根據(jù)AAS推出兩三角形全等即可;②根據(jù)已知條件得到AB=BC,求出PE=BC,PF=AB,根據(jù)相似三角形的判定推出△PFN∽△PEM,根據(jù)相似三角形的性質(zhì)得到,即可得出答案.

(2)①根據(jù)相似三角形的性質(zhì)得到=2,設(shè)CF=x,則PE=2x,求出PF=x,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;②求出CP=2cm,分為兩種情況:第一種情況:當(dāng)N在線段BC上時(shí),得出△PCN是等邊三角形,求出CN=CP=2cm,即可得到結(jié)論;第二種情況:當(dāng)N在線段BC的延長線上時(shí),求出CN=PC=2cm,即可得到結(jié)論.

試題解析:(1)①△AEP≌△PFC,

理由是:∵P為AC中點(diǎn),

∴AP=PC,

∵PE⊥AB,PF⊥BC,∠B=90°,

∴∠AEP=∠B=∠PFC=90°,

∴PF∥AB,PE∥BC,

∴∠APE=∠C=60°,

在△AEP和△PFC中

∴△AEP≌△PFC(AAS);

②△PFN∽△PEM,PN=PM,

理由是:∵在Rt△ACB中,∠ABC=90°,∠C=60°,

∴AB=BC,

∵PE∥BC,PF∥AB,P為AC中點(diǎn),

∴E為AB中點(diǎn),F(xiàn)為BC中點(diǎn),

∴PE=BC,PF=AB,

,

∵∠PEB=∠B=∠PFB=90°,

∴∠EPF=90°,

∵∠MPN=90°,

∴∠EPM=∠NPF=90°-∠MPF,

∵∠PEM=∠PFN=90°,

∴△PFN∽△PEM,

,

∴PN=PM.

(2)①PM=2PN,如圖1,

證明:過P作PE⊥AB于E,PF⊥BC于F,

∵∠AEP=∠PFC=∠B=90°,

∴PE∥BC,

∴∠APE=∠C,

∴△AEP∽∠PFC,

,

設(shè)CF=x,則PE=2x,

在Rt△PFC中,∠C=60°,∠PFC=90°,

∴PF=x,

∵在四邊形BFPE中,∠BFP=∠B=∠BEP=90°,

∴∠EPF=90°,

即∠EPM+∠MPF=90°,

∵∠NPF+∠MPF=90°,

∴∠NPF=∠EPM,

∵∠MEP=∠PFN=90°,

∴△PEM∽△PFN,

,

∴PM=PN;

②∵在Rt△ABC中,∠B=90°,∠C=60°,BC=3cm,

∴AC=2BC=6cm,

∵AP=2PC,

∴CP=2cm,

分為兩種情況:第一種情況:當(dāng)N在線段BC上時(shí),如圖2,

∵△PCN是等腰三角形,∠C=60°,CP=2cm,

∴△PCN是等邊三角形,

∴CN=CP=2cm,

∴BN=BC-CN=3cm-2cm=1cm;

第二種情況:當(dāng)N在線段BC的延長線上時(shí),如圖3,

∵∠PCN=180°-60°=120°,

∴要△PCN是等腰三角形,只能PC=CN,

即CN=PC=2cm,

∴BN=BC+CN=3cm+2cm=5cm,

即BN的長是1cm或5cm,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線y=(x-1)2+3向左平移1個(gè)單位,得到的拋物線與y軸的交點(diǎn)的坐標(biāo)是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)甘肅省財(cái)政快報(bào)統(tǒng)計(jì),2014年全省財(cái)政收入672220000000元,67220000000用科學(xué)記數(shù)法表示為(  )

A. 6.722×109 B. 6.722×1010 C. 67.22×109 D. 67.22×1010

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-2,1),B(-1,4),C(-3,2).

(1)畫出△ABC關(guān)于y軸對稱的圖形△A1B1C1,并直接寫出C1點(diǎn)坐標(biāo);

(2)以原點(diǎn)O為位似中心,位似比為1:2,在y軸的左側(cè),畫出△ABC放大后的圖形△A2B2C2,并直接寫出C2點(diǎn)坐標(biāo);

(3)如果點(diǎn)D(a,b)在線段AB上,請直接寫出經(jīng)過(2)的變化后點(diǎn)D的對應(yīng)點(diǎn)D2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王玲和李凱進(jìn)行投球比賽,每人連投12次,投中一次記2分,投空一次記1分,王玲先投,投得16分,李凱要想超過王玲,應(yīng)至少投中________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知(m﹣n)2=34,(m+n)2=4 000,則m2+n2的值為(
A.2 016
B.2 017
C.2 018
D.4 034

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(12a3﹣6a2)÷(﹣2a)=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:a2+2a=_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)P(x,y)在第四象限,且|x|=2,|y|=3,則x+y=(  )

A. ﹣1 B. 1 C. 5 D. ﹣5

查看答案和解析>>

同步練習(xí)冊答案