精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在梯形ABCD中,∠BCD=D=90,上底AD=3,下底BC=,高CD=4,沿AC把梯形ABCD翻折,點D是恰好落在AB邊上的點E處,求BCE面積。

【答案】 .

【解析】

先根據梯形的面積計算公式求出梯形的面積,再根據三角形的面積計算公式求出三角形ACD的面積,然后根據折疊的性質,可得到三角形ACE的面積,三角形BCE的面積=梯形的面積-三角形ACD的面積-三角形ACE的面積,從而問題得解.

解:∵ACEACD折疊得到,

∴∠AEC=D=90°,AE=AD=3,CE=CD=4.

ACE的面積=ACD的面積=43=6.

∵梯形ABCD的面積=

BCE面積=梯形ABCD的面積-ACE的面積-ACD的面積

= -6-6

=

答:BCE面積是 .

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(0t≤15).過點DDFBC于點F,連接DE,EF

1)求證:AE=DF;

2)四邊形AEFD能夠成為菱形嗎?如果能,求出t的值,如果不能,說明理由;

3)在運動過程中,四邊形BEDF能否為正方形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有一座拋物線拱型橋,在正常水位時,水面的寬為米,拱橋的最高點到水面的距離米,點的中點,如圖,以點為原點,直線軸,建立直角坐標系.

(1)求該拋物線的表達式;

(2)如果水面上升米(即)至水面,點在點的左側,

求水面寬度的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,海中有一個小島 A,該島四周 11 海里范圍內有暗礁.有一貨輪在海面上由西向正東方向航行,到達B處時它在小島南偏西60°的方向上,再往正東方向行駛10海里后恰好到達小島南偏西45°方向上的點C處.問:如果貨輪繼續(xù)向正東方向航行,是否會有觸礁的危險?(參考數據:≈1.41,≈1.73)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小亮步行上山游玩,設小亮出發(fā)x min加后行走的路程為y m.圖中的折線表示小亮在整個行走過程中yx的函數關系,

1)小亮行走的總路程是____________m,他途中休息了____________min.

2)當5080時,求yx的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算

1 (3)(8)(6)7;

2)-30×();

3 ()÷()223;

4)-42÷0.25×[5(3)2]

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC90°,AC的垂直平分線分別與AC,BCAB的延長線相交于點DE,F,點OEF中點,連結BO井延長到G,且GOBO,連接EGFG

1)試求四邊形EBFG的形狀,說明理由;

2)求證:BDBG

3)當ABBE1時,求EF的長,

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:正方形ABCD的邊長為8,點E、F分別在AD、CD上,AEDF2,BEAF相交于點G,點HBF的中點,連接GH,則GH的長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了慶祝元旦,某商場在門前的空地上用花盆排列出了如圖所示的圖案,第1個圖案中有10個花盆,第2個圖案中有19個花盆,…,按此規(guī)律排列下去.

1)第3個圖案中有______個花盆,第4個圖案中有______個花盆;

2)根據上述規(guī)律,求出第個圖案中花盆的個數(用含的代數式表示);

3)是否存在恰好由2026個花盆排列出的具有上述規(guī)律的圖案?若存在,說明它是第幾個圖案?若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案