【題目】下列計算正確的是( )
A.(a23=a5
B.a2a2=a4
C.3 =3
D. =3

【答案】D
【解析】解:A、(a23=a6,故此選項不符合題意;

B、a2a2=1,故此選項不符合題意;

C、3 =2 ,故此選項不符合題意;

D、 =3,符合題意.

所以答案是:D.

【考點精析】本題主要考查了整數(shù)指數(shù)冪的運算性質和同底數(shù)冪的乘法的相關知識點,需要掌握aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù));同底數(shù)冪的乘法法則aman=am+n(m,n都是正數(shù))才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在下列解題過程的空白處填上適當?shù)膬热?/span>(推理的理由或數(shù)學表達式)如圖,已知、分別平分,求證:.

證明:∵AB//CD,(已知)

∴∠ABC=______.(兩直線平行,內錯角相等)

__________.(已知)

∴∠EBC=ABC,(角的平分線定義)

同理,∠FCB=______.

∵∠EBC=FCB.(等量代換)

BE//CF.(____________________)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點Aa,0),B0,b),實數(shù)a、b滿足.

1)求點A、點B的坐標;

2)若點P的坐標是P(-2,x),且,且△PAB的面積為7,求x的值;

3)如圖,過點BBCx軸,Qx軸上點A左側的一動點連接QB,BM平分∠QBABN平分∠ABC,當點Q運動時直接寫出____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學對全校學生進行文明禮儀知識測試,為了解測試結果,隨機抽取部分學生的成績進行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖(不完整).

請你根據(jù)圖中所給的信息解答下列問題:

1)請將以上兩幅統(tǒng)計圖補充完整;

2)若一般優(yōu)秀均被視為達標成績,則該校被抽取的學生中有______人達標;

3)若該校學生有學生 2000人,請你估計此次測試中,全校達標的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠BAC=90 , AB=6,sinC= ,以點A為圓心,AB長為半徑作弧交AC于M,分別以B、M為圓心,以大于 BM長為半徑作弧,兩弧相交于N,射線AN與BC相交于D,則AD的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知是銳角,是鈍角,且=180°,那么下列結論正確的是(  。

A. 的補角和的補角相等 B. 的余角和的補角相等

C. 的余角和的補角互余 D. 的余角和的補角互補

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是等腰三角形,

尺規(guī)作圖:作的角平分線BD,交AC于點保留作圖痕跡,不寫作法

判斷是否為等腰三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,∠ACB=90°,點P為ΔABC內一點.

(1)連接PBPC,將ABCP沿射線CA方向平移,得到ΔDAE,點B,C,P的對應點分別為點DA、E,連接CE

①依題意,請在圖2中補全圖形;

②如果BPCE,BP=3,AB=6,求CE的長

(2)如圖3,以點A為旋轉中心,將ΔABP順時針旋轉60°得到△AMN,連接PA、PB、PC,當AC=3,AB=6時,根據(jù)此圖求PA+PB+PC的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將兩個全等的直角三角形ABC和DBE按圖①方式擺放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,點E落在AB上,DE所在直線交AC所在直線于點F.

(1)求證:AF+EF=DE;

(2)若將圖①中的△DBE繞點B按順時針方向旋轉角α,且0°<α<60°,其它條件不變,請在圖②中畫出變換后的圖形,并直接寫出你在(1)中猜想的結論是否仍然成立;

(3)若將圖①中的△DBE繞點B按順時針方向旋轉角β,且60°<β<180°,其它條件不變,如圖③.你認為(1)中猜想的結論還成立嗎?若成立,寫出證明過程;若不成立,請寫出AF、EF與DE之間的關系,并說明理由.

查看答案和解析>>

同步練習冊答案