【題目】七年級同學(xué)最喜歡看哪一類課外書?某校隨機(jī)抽取七年級部分同學(xué)對此進(jìn)行問卷調(diào)査(每人只選擇一種最喜歡的書籍類型).如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅統(tǒng)計(jì)圖(不完整).請根據(jù)統(tǒng)計(jì)圖信息,解答下列問題:

1)一共有多少名學(xué)生參與了本次問卷調(diào)查;

2)補(bǔ)全條形統(tǒng)計(jì)圖,并求出扇形統(tǒng)計(jì)圖中其他所在扇形的圓心角度數(shù);

3)若該年級有400名學(xué)生,請你估計(jì)該年級喜歡科普常識的學(xué)生人數(shù).

【答案】1200;(2)見解析,36°;(3120

【解析】

1)從兩個統(tǒng)計(jì)圖可得,小說的有80人,占調(diào)查人數(shù)的40%,可求出調(diào)查人數(shù);

2)求出科普常識人數(shù),即可補(bǔ)全條形統(tǒng)計(jì)圖:)樣本中,其它的占調(diào)查人數(shù)的,因此圓心角占360°的,10%,可求出度數(shù);

3)樣本估計(jì)總體,樣本中科普常識30%,估計(jì)總體400人的30%是喜歡科普常識的人數(shù).

180÷40%200人,

答:一共有200名學(xué)生參與了本次問卷調(diào)查;

2200×30%60人,補(bǔ)全條形統(tǒng)計(jì)圖如圖所示:

360°×36°

3400×30%120人,

答:該年級有400名學(xué)生喜歡科普常識的學(xué)生有120人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCDO為對角線ACBD的交點(diǎn),過點(diǎn)O的直線EF與直線GH分別交ADBC,ABCD于點(diǎn)E,FG,H,若EFGHOCFH相交于點(diǎn)M,當(dāng)CF=4,AG=2時,則OM的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】電器專營店的經(jīng)營利潤受地理位置、顧客消費(fèi)能力等因素的影響,某品牌電腦專營店設(shè)有甲、乙兩家分店,均銷售A、B、C、D四種款式的電腦,每種款式電腦的利潤如表1所示.現(xiàn)從甲、乙兩店每月售出的電腦中各隨機(jī)抽取所記錄的50臺電腦的款式,統(tǒng)計(jì)各種款式電腦的銷售數(shù)量,如表2所示.

1:四種款式電腦的利潤

電腦款式

A

B

C

D

利潤(元/臺)

160

200

240

320

2:甲、乙兩店電腦銷售情況

電腦款式

A

B

C

D

甲店銷售數(shù)量(臺)

20

15

10

5

乙店銷售數(shù)量(臺)8

8

10

14

18

試運(yùn)用統(tǒng)計(jì)與概率知識,解決下列問題:

1)從甲店每月售出的電腦中隨機(jī)抽取一臺,其利潤不少于240元的概率為   ;

2)經(jīng)市場調(diào)查發(fā)現(xiàn),甲、乙兩店每月電腦的總銷量相當(dāng).現(xiàn)由于資金限制,需對其中一家分店作出暫停營業(yè)的決定,若從每臺電腦的平均利潤的角度考慮,你認(rèn)為應(yīng)對哪家分店作出暫停營業(yè)的決定?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角標(biāo)系中,拋物線Cyx軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)Dy軸正半軸上一點(diǎn).且滿足ODOC,連接BD

1)如圖1,點(diǎn)P為拋物線上位于x軸下方一點(diǎn),連接PBPD,當(dāng)SPBD最大時,連接AP,以PB為邊向上作正BPQ,連接AQ,點(diǎn)M與點(diǎn)N為直線AQ上的兩點(diǎn),MN2且點(diǎn)N位于M點(diǎn)下方,連接DN,求DN+MN+AM的最小值

2)如圖2,在第(1)問的條件下,點(diǎn)C關(guān)于x軸的對稱點(diǎn)為E,將BOE繞著點(diǎn)A逆時針旋轉(zhuǎn)60°得到B′O′E′,將拋物線y沿著射線PA方向平移,使得平移后的拋物線C′經(jīng)過點(diǎn)E,此時拋物線C′x軸的右交點(diǎn)記為點(diǎn)F,連接E′F,B′F,R為線段E’F上的一點(diǎn),連接B′R,將B′E′R沿著B′R翻折后與B′E′F重合部分記為B′RT,在平面內(nèi)找一個點(diǎn)S,使得以B′R、TS為頂點(diǎn)的四邊形為矩形,求點(diǎn)S的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,,直線

1)若該拋物線與軸交點(diǎn)的縱坐標(biāo)為,求該拋物線的頂點(diǎn)坐標(biāo);

2)證明:該拋物線與直線必有兩個交點(diǎn);

3)若該拋物線經(jīng)過點(diǎn),且對任意實(shí)數(shù),不等式都成立;當(dāng)時,該二次函數(shù)的最小值為.求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知二次函數(shù)圖象經(jīng)過點(diǎn),,其對稱軸為直線

(1)求該二次函數(shù)的解析式;

(2)若直線的面積分成相等的兩部分,求的值;

(3)點(diǎn)是該二次函數(shù)圖象與軸的另一個交點(diǎn),點(diǎn)是直線上位于軸下方的動點(diǎn),點(diǎn)是第四象限內(nèi)該二次函數(shù)圖象上的動點(diǎn),且位于直線右側(cè).若以點(diǎn)為直角頂點(diǎn)的相似,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,AD=6,點(diǎn)PAB上,點(diǎn)QDC的延長線上,連接DP,QP,且∠APD=∠QPD,PQBC于點(diǎn)G.

(1)求證:DQPQ

(2)求AP·DQ的最大值;

(3)若PAB的中點(diǎn),求PG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形鐵皮AOB中,OA=30,∠AOB=36°OB在直線l上.將此扇形沿l按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)過程中無滑動),當(dāng)OA第一次落在l上時,停止旋轉(zhuǎn).則點(diǎn)O所經(jīng)過的路線長為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,,AD的垂直平分線交對角線BD于點(diǎn)P,垂足為E,連接CP,則________度.

查看答案和解析>>

同步練習(xí)冊答案