【題目】七年級同學(xué)最喜歡看哪一類課外書?某校隨機(jī)抽取七年級部分同學(xué)對此進(jìn)行問卷調(diào)査(每人只選擇一種最喜歡的書籍類型).如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅統(tǒng)計(jì)圖(不完整).請根據(jù)統(tǒng)計(jì)圖信息,解答下列問題:
(1)一共有多少名學(xué)生參與了本次問卷調(diào)查;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求出扇形統(tǒng)計(jì)圖中“其他”所在扇形的圓心角度數(shù);
(3)若該年級有400名學(xué)生,請你估計(jì)該年級喜歡“科普常識”的學(xué)生人數(shù).
【答案】(1)200;(2)見解析,36°;(3)120
【解析】
(1)從兩個統(tǒng)計(jì)圖可得,“小說”的有80人,占調(diào)查人數(shù)的40%,可求出調(diào)查人數(shù);
(2)求出“科普常識”人數(shù),即可補(bǔ)全條形統(tǒng)計(jì)圖:)樣本中,“其它”的占調(diào)查人數(shù)的,因此圓心角占360°的,10%,可求出度數(shù);
(3)樣本估計(jì)總體,樣本中“科普常識”占30%,估計(jì)總體400人的30%是喜歡“科普常識”的人數(shù).
(1)80÷40%=200人,
答:一共有200名學(xué)生參與了本次問卷調(diào)查;
(2)200×30%=60人,補(bǔ)全條形統(tǒng)計(jì)圖如圖所示:
360°×=36°,
(3)400×30%=120人,
答:該年級有400名學(xué)生喜歡“科普常識”的學(xué)生有120人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,O為對角線AC與BD的交點(diǎn),過點(diǎn)O的直線EF與直線GH分別交AD,BC,AB,CD于點(diǎn)E,F,G,H,若EF⊥GH,OC與FH相交于點(diǎn)M,當(dāng)CF=4,AG=2時,則OM的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】電器專營店的經(jīng)營利潤受地理位置、顧客消費(fèi)能力等因素的影響,某品牌電腦專營店設(shè)有甲、乙兩家分店,均銷售A、B、C、D四種款式的電腦,每種款式電腦的利潤如表1所示.現(xiàn)從甲、乙兩店每月售出的電腦中各隨機(jī)抽取所記錄的50臺電腦的款式,統(tǒng)計(jì)各種款式電腦的銷售數(shù)量,如表2所示.
表1:四種款式電腦的利潤
電腦款式 | A | B | C | D |
利潤(元/臺) | 160 | 200 | 240 | 320 |
表2:甲、乙兩店電腦銷售情況
電腦款式 | A | B | C | D |
甲店銷售數(shù)量(臺) | 20 | 15 | 10 | 5 |
乙店銷售數(shù)量(臺)8 | 8 | 10 | 14 | 18 |
試運(yùn)用統(tǒng)計(jì)與概率知識,解決下列問題:
(1)從甲店每月售出的電腦中隨機(jī)抽取一臺,其利潤不少于240元的概率為 ;
(2)經(jīng)市場調(diào)查發(fā)現(xiàn),甲、乙兩店每月電腦的總銷量相當(dāng).現(xiàn)由于資金限制,需對其中一家分店作出暫停營業(yè)的決定,若從每臺電腦的平均利潤的角度考慮,你認(rèn)為應(yīng)對哪家分店作出暫停營業(yè)的決定?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角標(biāo)系中,拋物線C:y=與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D為y軸正半軸上一點(diǎn).且滿足OD=OC,連接BD,
(1)如圖1,點(diǎn)P為拋物線上位于x軸下方一點(diǎn),連接PB,PD,當(dāng)S△PBD最大時,連接AP,以PB為邊向上作正△BPQ,連接AQ,點(diǎn)M與點(diǎn)N為直線AQ上的兩點(diǎn),MN=2且點(diǎn)N位于M點(diǎn)下方,連接DN,求DN+MN+AM的最小值
(2)如圖2,在第(1)問的條件下,點(diǎn)C關(guān)于x軸的對稱點(diǎn)為E,將△BOE繞著點(diǎn)A逆時針旋轉(zhuǎn)60°得到△B′O′E′,將拋物線y=沿著射線PA方向平移,使得平移后的拋物線C′經(jīng)過點(diǎn)E,此時拋物線C′與x軸的右交點(diǎn)記為點(diǎn)F,連接E′F,B′F,R為線段E’F上的一點(diǎn),連接B′R,將△B′E′R沿著B′R翻折后與△B′E′F重合部分記為△B′RT,在平面內(nèi)找一個點(diǎn)S,使得以B′、R、T、S為頂點(diǎn)的四邊形為矩形,求點(diǎn)S的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,,直線.
(1)若該拋物線與軸交點(diǎn)的縱坐標(biāo)為,求該拋物線的頂點(diǎn)坐標(biāo);
(2)證明:該拋物線與直線必有兩個交點(diǎn);
(3)若該拋物線經(jīng)過點(diǎn),且對任意實(shí)數(shù),不等式都成立;當(dāng)時,該二次函數(shù)的最小值為.求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知二次函數(shù)圖象經(jīng)過點(diǎn),,其對稱軸為直線.
(1)求該二次函數(shù)的解析式;
(2)若直線將的面積分成相等的兩部分,求的值;
(3)點(diǎn)是該二次函數(shù)圖象與軸的另一個交點(diǎn),點(diǎn)是直線上位于軸下方的動點(diǎn),點(diǎn)是第四象限內(nèi)該二次函數(shù)圖象上的動點(diǎn),且位于直線右側(cè).若以點(diǎn)為直角頂點(diǎn)的與相似,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=6,點(diǎn)P在AB上,點(diǎn)Q在DC的延長線上,連接DP,QP,且∠APD=∠QPD,PQ交BC于點(diǎn)G.
(1)求證:DQ=PQ;
(2)求AP·DQ的最大值;
(3)若P為AB的中點(diǎn),求PG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在扇形鐵皮AOB中,OA=30,∠AOB=36°,OB在直線l上.將此扇形沿l按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)過程中無滑動),當(dāng)OA第一次落在l上時,停止旋轉(zhuǎn).則點(diǎn)O所經(jīng)過的路線長為( 。
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com